3.函數(shù)f(x)=$\sqrt{x}-cosx$在(0,+∞)內(nèi)( 。
A.沒有零點(diǎn)B.有且僅有一個(gè)零點(diǎn)
C.有且僅有兩個(gè)零點(diǎn)D.有無窮多個(gè)零點(diǎn)

分析 作函數(shù)y=$\sqrt{x}$與y=cosx的圖象,從而利用數(shù)形結(jié)合的思想判斷.

解答 解:作函數(shù)y=$\sqrt{x}$與y=cosx的圖象如下,
,
∵函數(shù)y=$\sqrt{x}$與y=cosx的圖象有且只有一個(gè)交點(diǎn),
∴函數(shù)f(x)=$\sqrt{x}-cosx$在(0,+∞)內(nèi)有且僅有一個(gè)零點(diǎn),
故選B.

點(diǎn)評(píng) 本題考查了數(shù)形結(jié)合的思想應(yīng)用及函數(shù)的零點(diǎn)與函數(shù)的圖象的關(guān)系應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a<b<0,$\root{3}{a}$-$\root{3}$=m,$\root{3}{a-b}$=n,則有( 。
A.m>nB.m<nC.m=nD.m≤n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)f(x)=ex-1+4x-4的零點(diǎn)所在區(qū)間為(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知不共線的向量$\overrightarrow{a}$,$\overrightarrow$,|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,$\overrightarrow{a}$•($\overrightarrow$-$\overrightarrow{a}$)=1,則|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(Ⅰ) 計(jì)算:1.10+$\root{3}{512}$-0.5-2+lg25+2lg2;
(Ⅱ) 在△ABC中,sinA+cosA=$\frac{2}{3}$,求sinA•cosA的值,并判斷三角形ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.如圖,設(shè)正三棱錐P-ABC的側(cè)棱長為l,∠APB=30°,E,F(xiàn)分別是BP,CP上的點(diǎn),則△AEF周長的最小值為$\sqrt{2}l$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=b+logax(a>0且a≠1)的圖象經(jīng)過點(diǎn)(4,1)和(1,-1)
(1)求函數(shù)f(x)的解析式;
(2)令g(x)=2f(x+1)-f(x),求g(x)的最小值及取最小值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)f(x)=$\left\{\begin{array}{l}{\frac{{x}^{3}}{3},x≤1}\\{{x}^{2},x>1}\end{array}\right.$,函數(shù)f(x)在x=1不連續(xù)(連續(xù)或不連續(xù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在正方體ABCD-A′B′C′D′中,求向量$\overrightarrow{AC}$分別與向量$\overrightarrow{A′B′}$,$\overrightarrow{B′A′}$,$\overrightarrow{AD′}$,$\overrightarrow{CD′}$,$\overrightarrow{B′D′}$的夾角.

查看答案和解析>>

同步練習(xí)冊(cè)答案