10.已知函數(shù)f(x)=lnx-$\frac{a}{x}$,g(x)=f(x)+ax-6lnx,其中a∈R.
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若g(x)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)a的取值范圍.

分析 (Ⅰ)求導(dǎo)數(shù)f′(x),判斷導(dǎo)數(shù)f′(x)的符號即可;
(Ⅱ)由g(x)在其定義域內(nèi)為增函數(shù),知對?x∈(0,+∞),g'(x)≥0成立,分離出參數(shù)a后轉(zhuǎn)化為求函數(shù)的最值即可.

解答 解:(Ⅰ)f(x)的定義域?yàn)椋?,+∞),且f′(x)=$\frac{x+a}{{x}^{2}}$,
①當(dāng)a≥0時(shí),f′(x)>0,f(x)在(0,+∞)上單調(diào)遞增;
②當(dāng)a<0時(shí),由f′(x)>0,得x>-a;由f′(x)<0,得x<-a;
故f(x)在(0,-a)上單調(diào)遞減,在(-a,+∞)上單調(diào)遞增.
(Ⅱ)g(x)=ax-$\frac{a}{x}$-5lnx,g(x)的定義域?yàn)椋?,+∞),
g′(x)=$\frac{a{x}^{2}-5x+a}{{x}^{2}}$,
因?yàn)間(x)在其定義域內(nèi)為增函數(shù),所以?x∈(0,+∞),g(x)≥0,
即ax2-5x+a≥0,則a≥$\frac{5x}{{x}^{2}+1}$,
而$\frac{5x}{{x}^{2}+1}$=$\frac{5}{x+\frac{1}{x}}$≤$\frac{5}{2}$,當(dāng)且僅當(dāng)x=1時(shí)取等號,
所以a≥$\frac{5}{2}$.

點(diǎn)評 本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬中檔題,導(dǎo)數(shù)的符號決定函數(shù)的增減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ln$\frac{1+x}{1-x}$.
(1)判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)判斷函數(shù)f(x)在其定義域上的單調(diào)性,并用單調(diào)性定義證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知平面上三點(diǎn)A,B,C,$\overrightarrow{BC}$=(2-k,3),$\overrightarrow{AC}$=(2,4).
(1)三點(diǎn)A,B,C不能構(gòu)成三角形,求實(shí)數(shù)k應(yīng)滿足的條件;
(2)若△ABC中角A為直角,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.曲線C的方程:$\frac{{x}^{2}}{5-m}$+$\frac{{y}^{2}}{m-2}$=1.
(1)當(dāng)m為何值時(shí),曲線C表示焦點(diǎn)在x軸上的橢圓?
(2)當(dāng)m為何值時(shí),曲線C表示雙曲線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=$\frac{1}{3}$x3-4x+4在區(qū)間[0,3]上的最小值為( 。
A.4B.1C.-$\frac{4}{3}$D.-$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)=\sqrt{{9^x}-{3^x}}$.
(1)求f(x)定義域和值域;
(2)若 $f(x)>\sqrt{6}$,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)全集U={-5,-3,1,2,3,4,5,6},集合A={x|x2-7x+12=0},集合B={a2,2a-1,6}.
(1)若a=-1,求(∁UA)∩(∁UB);
(2)若A∩B={4},且B⊆U,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.公差不為0的等差數(shù)列的第1,3,6項(xiàng)成等比數(shù)列,則該數(shù)列的公比為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某班級有50名學(xué)生,現(xiàn)要采取系統(tǒng)抽樣的方法在這50名學(xué)生中抽出10名學(xué)生,將這50名學(xué)生隨機(jī)編號1~50號,并分組,第一組1~5號,第二組6~10號,…,第十組46~50號,若在第一組中抽得號碼為3的學(xué)生,則在第十組中抽得學(xué)生號碼為(  )
A.50B.49C.48D.47

查看答案和解析>>

同步練習(xí)冊答案