在二項(xiàng)式(2x+1)6的展開(kāi)式中,系數(shù)最大項(xiàng)的系數(shù)是( 。
A、20B、160
C、240D、192
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專(zhuān)題:二項(xiàng)式定理
分析:由通項(xiàng)公式可得第r+1項(xiàng)的系數(shù)為
C
r
6
•26-r,經(jīng)過(guò)檢驗(yàn),當(dāng)r=2時(shí),系數(shù)最大,并求得此最大值.
解答: 解:二項(xiàng)式(2x+1)6的展開(kāi)式的通項(xiàng)公式為 Tr+1=
C
r
6
•26-r•x6-r,
故第r+1項(xiàng)的系數(shù)為
C
r
6
•26-r,經(jīng)過(guò)檢驗(yàn),當(dāng)r=2時(shí),系數(shù)最大為240,
故選:C.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=alnx+
1
2
x2-(1+a)x,若f(x)≥0在定義域內(nèi)恒成立,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,A,B,C,D是圓O上的四個(gè)點(diǎn),DE為圓O的切線(xiàn),AC∥DE,直線(xiàn)AC與BD交于點(diǎn)F,若AB=2,AD=3,BD=4,則CF=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的導(dǎo)數(shù)
(1)g(x)=
x
2+x2

(2)g(x)=x(x+1)(x-3)
(3)g(x)=excosx
(4)g(x)=x+2sinx
(5)h(x)=2x3-3x2+x-8
(6)u(x)=5-3x+2x2-x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=m-|x-1|-2|x+1|.
(Ⅰ)當(dāng)m=5時(shí),求不等式f(x)>2的解集;
(Ⅱ)若二次函數(shù)y=x2+2x+3與函數(shù)y=f(x)的圖象恒有公共點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在R上定義運(yùn)算?:x?y=(1-x)y,若對(duì)任意x>2,不等式x?(x-m)≤m+2都成立,則實(shí)數(shù)m的取值范圍是( 。
A、[-1,7]
B、(-∞,7]
C、(-∞,3]
D、(-∞,-1]∪[7,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線(xiàn)C1的參數(shù)方程為
x=-2+
10
cosθ
y=
10
sinθ
為參數(shù)),曲線(xiàn)C2的極坐標(biāo)方程為ρ=2cosθ+6sinθ,問(wèn)曲線(xiàn)C1,C2是否相交,若相交請(qǐng)求出公共弦的方程,若不相交,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(1,2),
b
=(2x,-3),若
a
b
共線(xiàn),則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于正項(xiàng)數(shù)列{an},若
an+1
an
≥q
對(duì)一切n∈N*恒成立,則ana1qn-1對(duì)n∈N*也恒成立是真命題.
(1)若a1=1,an>0,且
an+1
an
≥3c(c≠
1
3
,c≠1)
,求證:數(shù)列{an}前n項(xiàng)和Sn
1-(3c)n
1-3c
;
(2)若x1=4,xn=
2xn-1+3
(n≥2,n∈N*)
,求證:3-(
2
3
)n-1xn≤3+(
2
3
)n-1

查看答案和解析>>

同步練習(xí)冊(cè)答案