【題目】設(shè)P為雙曲線 右支上一點(diǎn),M,N分別是圓(x+4)2+y2=4和(x﹣4)2+y2=1上的點(diǎn),設(shè)|PM|﹣|PN|的最大值和最小值分別為m,n,則|m﹣n|=(
A.4
B.5
C.6
D.7

【答案】C
【解析】解:圓C1:(x+4)2+y2=4的圓心為(﹣4,0),半徑為r1=2;

圓C2:(x﹣4)2+y2=1的圓心為(4,0),半徑為r2=1,

設(shè)雙曲線 的左右焦點(diǎn)為F1(﹣4,0),F(xiàn)2(4,0),

連接PF1,PF2,F(xiàn)1M,F(xiàn)2N,

可得|PF1|﹣|PF2|=2是定值,|PM|=|PF1|+r1,

|PN|=(|PF2|﹣r2),所以|PM|﹣|PN|的最大值2a+r1+r2=5,

|PM|=|PF1|﹣r1,

|PN|=(|PF2|+r2),所以|PM|﹣|PN|的最小值:2a﹣r1﹣r2=﹣1.

可得m=5,n=﹣1,則|m﹣n|=6.

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=ex﹣ax2 , g(x)是f(x)的導(dǎo)函數(shù). (I)求g(x)的極值;
(II)證明:對任意實(shí)數(shù)x∈R,都有f′(x)≥x﹣2ax+1恒成立:
(Ⅲ)若f(x)≥x+1在x≥0時(shí)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)正方體的玩具,六個(gè)面標(biāo)注了數(shù)字1,2,3,4,5,6,甲、乙兩位學(xué)生進(jìn)行如下游戲:甲先拋擲一次,記下正方體朝上的數(shù)字 ,再由乙拋擲一次,記下正方體朝上數(shù)字 ,若 就稱甲、乙兩人“默契配合”,則甲、乙兩人“默契配合”的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要分析學(xué)生初中升學(xué)考試的數(shù)學(xué)成績對高一年級數(shù)學(xué)學(xué)習(xí)有什么影響,在高一年級學(xué)生中隨機(jī)抽取10名學(xué)生,分析他們?nèi)雽W(xué)的數(shù)學(xué)成績(x)和高一年級期末數(shù)學(xué)考試成績(y)(如下表):

編號

1

2

3

4

5

6

7

8

9

10

x

63

67

45

88

81

71

52

99

58

76

y

65

78

52

85

92

89

73

98

56

75


(1)畫出散點(diǎn)圖;
(2)判斷入學(xué)成績(x)與高一期末考試成績(y)是否有線性相關(guān)關(guān)系;
(3)如果x與y具有線性相關(guān)關(guān)系,求出回歸直線方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校在校學(xué)生2 000人,為了學(xué)生的“德、智、體”全面發(fā)展,學(xué)校舉行了跑步和登山比賽活動,每人都參加而且只參與其中一項(xiàng)比賽,各年級參與比賽的人數(shù)情況如下表:

高一年級

高二年級

高三年級

跑步人數(shù)

a

b

c

登山人數(shù)

x

y

z

其中a∶b∶c=2∶5∶3,全校參與登山的人數(shù)占總?cè)藬?shù)的 .為了了解學(xué)生對本次活動的滿意程度,從中抽取一個(gè)200人的樣本進(jìn)行調(diào)查,則高三年級參與跑步的學(xué)生中應(yīng)抽取( )
A.15人
B.30人
C.40人
D.45人

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,則將f(x)的圖象向右平移 個(gè)單位所得曲線的一條對稱軸的方程是(
A.x=π
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在棱長都相等的四面體PABC中,D、EF分別是AB、BCCA的中點(diǎn),則下面四個(gè)結(jié)論中不成立的是 ( )
A.BC∥平面PDF
B.DF⊥平面PAE
C.平面PDF⊥平面ABC
D.平面PAE⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將下列集合用區(qū)間表示出來:
(1);
(2);
(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論不正確的是(填序號).
①各個(gè)面都是三角形的幾何體是三棱錐;
②以三角形的一條邊所在直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐;
③棱錐的側(cè)棱長與底面多邊形的邊長相等,則此棱錐可能是六棱錐;
④圓錐的頂點(diǎn)與底面圓周上的任意一點(diǎn)的連線都是母線.

查看答案和解析>>

同步練習(xí)冊答案