【題目】設(shè)定義在上的函數(shù) ),給出以下四個(gè)論斷:

的周期為;②在區(qū)間上是增函數(shù);③的圖象關(guān)于點(diǎn)對(duì)稱;④的圖象關(guān)于直線對(duì)稱.以其中兩個(gè)論斷作為條件,另兩個(gè)論斷作為結(jié)論,寫出你認(rèn)為正確的一個(gè)命題(寫成“”的形式)__________.(其中用到的論斷都用序號(hào)表示)

【答案】①④②③或①③②④

【解析】 fx)的周期為π,則ω=2,函數(shù)fx=sin2x+φ).若再由 fx)的圖象關(guān)于直線x=對(duì)稱,則sin+ 取最值,又2×+=,,=,此時(shí),

fx=sin2x+),②③成立,故由①④可以推出 ②③成立.

若①的周期為則ω=2,函數(shù)fx=sin2x+φ).若再由③的圖象關(guān)于點(diǎn)對(duì)稱,則所以,此時(shí)fx=sin2x+),②④成立,故由①③②④

故答案為①④②③或①③②④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】信息科技的進(jìn)步和互聯(lián)網(wǎng)商業(yè)模式的興起,全方位地改變了大家金融消費(fèi)的習(xí)慣和金融交易模式,現(xiàn)在銀行的大部分業(yè)務(wù)都可以通過智能終端設(shè)備完成,多家銀行職員人數(shù)在悄然減少.某銀行現(xiàn)有職員320人,平均每人每年可創(chuàng)利20萬元.據(jù)評(píng)估,在經(jīng)營條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.2萬元,但銀行需付下崗職員每人每年6萬元的生活費(fèi),并且該銀行正常運(yùn)轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的,為使裁員后獲得的經(jīng)濟(jì)效益最大,該銀行應(yīng)裁員多少人?此時(shí)銀行所獲得的最大經(jīng)濟(jì)效益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了考察某種中成藥預(yù)防流感的效果,抽樣調(diào)查40人,得到如下數(shù)據(jù)

患流感

未患流感

服用藥

2

18

未服用藥

8

12

根據(jù)表中數(shù)據(jù),通過計(jì)算統(tǒng)計(jì)量K2= ,并參考以下臨界數(shù)據(jù):

P(K2>k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.828

若由此認(rèn)為“該藥物有效”,則該結(jié)論出錯(cuò)的概率不超過(
A.0.05
B.0.025
C.0.01
D.0.005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的方程為 + =1(a>b>0),雙曲線 =1的一條漸近線與x軸所成的夾角為30°,且雙曲線的焦距為4

(1)求橢圓C的方程;
(2)過右焦點(diǎn)F的直線l,交橢圓于A、B兩點(diǎn),記△AOF的面積為S1 , △BOF的面積為S2 , 當(dāng)S1=2S2時(shí),求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}滿足(1﹣a10085+2016(1﹣a1008)=1,(1﹣a10095+2016(1﹣a1009)=﹣1,數(shù)列{an}的前n項(xiàng)和記為Sn , 則(
A.S2016=2016,a1008>a1009
B.S2016=﹣2016,a1008>a1009
C.S2016=2016,a1008<a1009
D.S2016=﹣2016,a1008<a1009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第35屆牡丹花會(huì)期間,我班有5名學(xué)生參加志愿者服務(wù),服務(wù)場(chǎng)所是王城公園和牡丹公園.
(1)若學(xué)生甲和乙必須在同一個(gè)公園,且甲和丙不能在同一個(gè)公園,則共有多少種不同的分配方案?
(2)每名學(xué)生都被隨機(jī)分配到其中的一個(gè)公園,設(shè)X,Y分別表示5名學(xué)生分配到王城公園和牡丹公園的人數(shù),記ξ=|X﹣Y|,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望E(ξ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價(jià)定為60元.該廠為鼓勵(lì)銷售商定購,決定當(dāng)一次定購量超過100件時(shí),每多定購一件,訂購的全部零件的出廠單價(jià)就降低0.02元.根據(jù)市場(chǎng)調(diào)查,銷售商一次定購量不會(huì)超過500件.

(1)設(shè)一次定購量為x件,服裝的實(shí)際出廠總價(jià)為P元,寫出函數(shù)P=f(x)的表達(dá)式;

(2)當(dāng)銷售商一次定購了450件服裝時(shí),該服裝廠獲得的利潤是多少元?

(服裝廠售出一件服裝的利潤=實(shí)際出廠價(jià)格-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

() 1是關(guān)于x的方程的一個(gè)解,求t的值;

() 當(dāng)時(shí),解不等式;

()若函數(shù)在區(qū)間(-1,2]上有零點(diǎn),求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下命題正確的個(gè)數(shù)為( ) ①存在無數(shù)個(gè)α,β∈R,使得等式sin(α﹣β)=sinαcosβ+cosαsinβ成立;
②在△ABC中,“A> ”是“sinA> ”的充要條件;
③命題“在△ABC中,若sinA=sinB,則A=B”的逆否命題是真命題;
④命題“若α= ,則sinα= ”的否命題是“若α≠ ,則sinα≠ ”.
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案