已知非零向量
a
、
b
滿足|
a
+
b
|=|
b
|,
①若
a
b
共線,則
a
=-2
b
;
②若
a
、
b
不共線,則以|
a
|、|
a
+2
b
|、2|
b
|為邊長(zhǎng)的三角形為直角三角形;
③2|
b
|>|
a
+2
b
|;
④2|
b
|<|
a
+2
b
|.
其中正確的命題序號(hào)是
 
考點(diǎn):命題的真假判斷與應(yīng)用
專題:平面向量及應(yīng)用
分析:利用向量的數(shù)量積的性質(zhì),結(jié)合已知可得,|
a
+
b
|=|
b
|⇒
a
2=-2
a
b
,對(duì)各選項(xiàng)逐項(xiàng)檢驗(yàn)
解答: 解:|
a
+
b
|=|
b
|⇒
a
2=-2
a
b
,
①若
a
、
b
共線,則
a
=-2
b
,故①正確;
②|
a
+2
b
|2+|
a
|2=
a
2+4
a
b
+4
b
2+
a
2=4
b
2=(2|
b
|)2,故②正確
③4|
b
|2-|
a
+2
b
|2=-
a
2-4
a
b
=
a
2>0,故③正確,④錯(cuò)誤
故答案為:①②③
點(diǎn)評(píng):本題主要考查了平面向量的數(shù)量積的性質(zhì)的應(yīng)用,向量的模的求解,向量共線的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且4cos2
A-B
2
-4sinAsinB=3.
(1)求C;
(2)若c=2
3
,a+b=ab,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知,P為(x0,y0),C為(x,y),則
PC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=Sn-1+an-1+2n,且首項(xiàng)a1=1.求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(θ)=
cos(θ-
2
)sin(
3
+θ)
sin(-θ-π)

(1)化簡(jiǎn)f(θ);
(2)若f(θ)=
1
3
,求tanθ的值;
(3)若f(
π
6
-θ)=
1
3
,求f(
6
+θ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△OAB中,記向量
OA
=
a
,
OB
=
b
,若M是△OAB所在平面內(nèi)的點(diǎn),且
OM
=
1
3
a
+
2
3
b
,求證:點(diǎn)M在直線AB上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知多項(xiàng)式函數(shù)f(x)的導(dǎo)數(shù)f′(x)=x2+4x,f(-3)=10,求f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知大西北某荒漠上A、B兩點(diǎn)相距2km,現(xiàn)準(zhǔn)備在荒漠上開(kāi)墾出一片以AB為一條對(duì)角線的平行四邊形區(qū)域建成農(nóng)藝園,按照規(guī)劃,圍墻總長(zhǎng)為8km.
(1)試求四邊形另兩個(gè)頂點(diǎn)的軌跡方程;
(2)問(wèn)農(nóng)藝園的最大面積能達(dá)到多少?
(3)該荒漠上有一條直線型小溪l剛好通過(guò)點(diǎn)A,且l與AB成30°角,現(xiàn)要對(duì)整條水溝進(jìn)行加固改造,但考慮到今后農(nóng)藝園的水溝要重新設(shè)計(jì)改造,因此,對(duì)水溝可能被農(nóng)藝園圍進(jìn)的部分暫不加固,則暫不加固的部分有多長(zhǎng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U={-3,-2,-1,0,1,2},A={x|x2-x=0},B={x|x=a+1},a∈A,則∁U(A∪B)中元素個(gè)數(shù)有
 
個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案