【題目】(本小題滿分13分)在四棱錐中, ,

, 平面,直線PC與平面ABCD所成角為,

)求四棱錐的體積

)若的中點(diǎn),求證:平面 平面

【答案】)證明見(jiàn)解析

【解析】試題分析:(1)利用棱錐的體積公式求體積.;(3)證明兩個(gè)平面垂直,首先考慮直線與平面垂直,也可以簡(jiǎn)單記為證面面垂直,找線面垂直,是化歸思想的體現(xiàn),這種思想方法與空間中的平行關(guān)系的證明類(lèi)似,掌握化歸與轉(zhuǎn)化思想方法是解決這類(lèi)題的關(guān)鍵.

試題解析:(1平面是直線PC與平面ABCD所成角,依題設(shè), 2

中, , ,

PA=AC=4

中, , 4

6

2,又,,9

PA="AC" 的中點(diǎn),

,13

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C1與圓C2相交于AB兩點(diǎn),

(1)求公共弦AB所在的直線方程;

(2)求圓心在直線上,且經(jīng)過(guò)A、B兩點(diǎn)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,在四棱錐P﹣ABCD中,側(cè)面PAD底面ABCD,側(cè)棱PA=PD= ,PA⊥PD,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O為AD中點(diǎn).

(1) 求直線PB與平面POC所成角的余弦值;

(2)線段上是否存在一點(diǎn),使得二面角的余弦值為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且a2=8,Sn= ﹣n﹣1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{ }的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B是治療同一種疾病的兩種藥,用若干試驗(yàn)組進(jìn)行對(duì)比試驗(yàn).每個(gè)試驗(yàn)組由4只小白鼠組成,其中2只服用A,另2只服用B,然后觀察療效.若在一個(gè)試驗(yàn)組中,服用A有效的小白鼠的只數(shù)比服用B有效的多,就稱(chēng)該試驗(yàn)組為甲類(lèi)組.設(shè)每只小白鼠服用A有效的概率為 ,服用B有效的概率為
(Ⅰ)求一個(gè)試驗(yàn)組為甲類(lèi)組的概率;
(Ⅱ)觀察3個(gè)試驗(yàn)組,用ξ表示這3個(gè)試驗(yàn)組中甲類(lèi)組的個(gè)數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,角所對(duì)的邊分別為,且 的中點(diǎn),且 ,則的最短邊的邊長(zhǎng)為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,點(diǎn)在直線上.數(shù)列 滿足 ,且,前11項(xiàng)和為.

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)是否存在,使得成立?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐,底面是邊長(zhǎng)為的菱形, 的中點(diǎn),

與平面所成角的正弦值為.

(1)在棱上求一點(diǎn),使平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線AC與BD交于點(diǎn)O,AB=5,AC=6,點(diǎn)E,F分別在AD,CD上,AE=CF= ,EF交BD于點(diǎn)H.將△DEF沿EF折到△ 的位置, .

(1)證明: 平面ABCD;
(2)求二面角 的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案