13.設(shè)$\overrightarrow{i}$,$\overrightarrow{j}$是兩個不共線的向量,若$\overrightarrow{AB}$=2$\overrightarrow{i}$-3$\overrightarrow{j}$,$\overrightarrow{BC}$=-3$\overrightarrow{i}$+$\overrightarrow{j}$,$\overrightarrow{DC}$=3$\overrightarrow{i}$+6$\overrightarrow{j}$,則( 。
A.A、B、C三點共線B.A、B、D三點共線C.A、C、D三點共線D.B、C、D三點共線

分析 根據(jù)向量的加法運算求出$\overrightarrow{AC}$,結(jié)合向量共線的關(guān)系進行判斷即可.

解答 解:∵$\overrightarrow{AB}$=2$\overrightarrow{i}$-3$\overrightarrow{j}$,$\overrightarrow{BC}$=-3$\overrightarrow{i}$+$\overrightarrow{j}$,$\overrightarrow{DC}$=3$\overrightarrow{i}$+6$\overrightarrow{j}$,
∴$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{BC}$=2$\overrightarrow{i}$-3$\overrightarrow{j}$-3$\overrightarrow{i}$+$\overrightarrow{j}$=-$\overrightarrow{i}$-2$\overrightarrow{j}$,
則$\overrightarrow{DC}$=3$\overrightarrow{i}$+6$\overrightarrow{j}$=-3(-$\overrightarrow{i}$-2$\overrightarrow{j}$)=-3$\overrightarrow{AC}$,
即A,C,D,三點共線,
故選:C.

點評 本題主要考查三點共線的判斷,根據(jù)向量的加法運算以及向量的共線定理是解決本題的關(guān)鍵,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知矩陣A=$[\begin{array}{l}{1}&{2}\\{0}&{-2}\end{array}]$,矩陣B的逆矩陣B-1=$[\begin{array}{l}{1}&{-\frac{1}{2}}\\{0}&{2}\end{array}]$,求矩陣AB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.如圖,AB是圓的直徑,弦CD與AB相交于點E,BE=2AE=2,BD=ED,則線段CE的長為$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設(shè)集合A={0,2,4,6,8,10},B={4,8},則∁AB=( 。
A.{4,8}B.{0,2,6}C.{0,2,6,10}D.{0,2,4,6,8,10}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知f(x)為偶函數(shù),當x≤0時,f(x)=e-x-1-x,則曲線y=f(x)在點(1,2)處的切線方程是y=2x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,x>0}\\{|x|,x≤0}\end{array}\right.$,則f(f(-9))=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知向量$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),則∠ABC=( 。
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.方程3sinx=1+cos2x在區(qū)間[0,2π]上的解為$\frac{π}{6}$或$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+(4a-3)x+3a,x<0}\\{lo{g}_{a}(x+1)+1,x≥0}\end{array}\right.$(a>0,且a≠1)在R上單調(diào)遞減,且關(guān)于x的方程|f(x)|=2-x恰好有兩個不相等的實數(shù)解,則a的取值范圍是(  )
A.(0,$\frac{2}{3}$]B.[$\frac{2}{3}$,$\frac{3}{4}$]C.[$\frac{1}{3}$,$\frac{2}{3}$]∪{$\frac{3}{4}$}D.[$\frac{1}{3}$,$\frac{2}{3}$)∪{$\frac{3}{4}$}

查看答案和解析>>

同步練習冊答案