分析 由BD=ED,可得△BDE為等腰三角形,過D作DH⊥AB于H,由相交弦定理求得DH,在Rt△DHE中求出DE,再由相交弦定理求得CE.
解答 解:如圖,
過D作DH⊥AB于H,
∵BE=2AE=2,BD=ED,
∴BH=HE=1,則AH=2,BH=1,
∴DH2=AH•BH=2,則DH=$\sqrt{2}$,
在Rt△DHE中,則$DE=\sqrt{D{H}^{2}+H{E}^{2}}=\sqrt{2+1}=\sqrt{3}$,
由相交弦定理可得:CE•DE=AE•EB,
∴$CE=\frac{AE•EB}{DE}=\frac{1×2}{\sqrt{3}}=\frac{2\sqrt{3}}{3}$.
故答案為:$\frac{2\sqrt{3}}{3}$.
點(diǎn)評(píng) 本題考查與圓有關(guān)的比例線段,考查相交弦定理的應(yīng)用,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,2) | C. | (0,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充要條件 | B. | 充分而不必要條件 | ||
C. | 必要而不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A、B、C三點(diǎn)共線 | B. | A、B、D三點(diǎn)共線 | C. | A、C、D三點(diǎn)共線 | D. | B、C、D三點(diǎn)共線 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com