4.如圖,AB是圓的直徑,弦CD與AB相交于點(diǎn)E,BE=2AE=2,BD=ED,則線段CE的長為$\frac{2\sqrt{3}}{3}$.

分析 由BD=ED,可得△BDE為等腰三角形,過D作DH⊥AB于H,由相交弦定理求得DH,在Rt△DHE中求出DE,再由相交弦定理求得CE.

解答 解:如圖,
過D作DH⊥AB于H,
∵BE=2AE=2,BD=ED,
∴BH=HE=1,則AH=2,BH=1,
∴DH2=AH•BH=2,則DH=$\sqrt{2}$,
在Rt△DHE中,則$DE=\sqrt{D{H}^{2}+H{E}^{2}}=\sqrt{2+1}=\sqrt{3}$,
由相交弦定理可得:CE•DE=AE•EB,
∴$CE=\frac{AE•EB}{DE}=\frac{1×2}{\sqrt{3}}=\frac{2\sqrt{3}}{3}$.
故答案為:$\frac{2\sqrt{3}}{3}$.

點(diǎn)評(píng) 本題考查與圓有關(guān)的比例線段,考查相交弦定理的應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)直線y=x+2a與圓C:x2+y2-2ay-2=0相交于A,B兩點(diǎn),若|AB|=2$\sqrt{3}$,則圓C的面積為4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)直線l1,l2分別是函數(shù)f(x)=$\left\{\begin{array}{l}{-lnx,0<x<1}\\{lnx,x>1}\end{array}\right.$圖象上點(diǎn)P1,P2處的切線,l1與l2垂直相交于點(diǎn)P,且l1,l2分別與y軸相交于點(diǎn)A,B,則△PAB的面積的取值范圍是( 。
A.(0,1)B.(0,2)C.(0,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在平面直角坐標(biāo)系中,當(dāng)P(x,y)不是原點(diǎn)時(shí),定義P的“伴隨點(diǎn)”為P′($\frac{y}{{x}^{2}+{y}^{2}}$,$\frac{-x}{{x}^{2}+{y}^{2}}$);當(dāng)P是原點(diǎn)時(shí),定義P的“伴隨點(diǎn)“為它自身,平面曲線C上所有點(diǎn)的“伴隨點(diǎn)”所構(gòu)成的曲線C′定義為曲線C的“伴隨曲線”.現(xiàn)有下列命題:
①若點(diǎn)A的“伴隨點(diǎn)”是點(diǎn)A′,則點(diǎn)A′的“伴隨點(diǎn)”是點(diǎn)A;
②單位圓的“伴隨曲線”是它自身;
③若曲線C關(guān)于x軸對(duì)稱,則其“伴隨曲線”C′關(guān)于y軸對(duì)稱;
④一條直線的“伴隨曲線”是一條直線.
其中的真命題是②③(寫出所有真命題的序列).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè){an}是首項(xiàng)為正數(shù)的等比數(shù)列,公比為q,則“q<0”是“對(duì)任意的正整數(shù)n,a2n-1+a2n<0”的(  )
A.充要條件B.充分而不必要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{3}$=1(a>$\sqrt{3}$)的右焦點(diǎn)為F,右頂點(diǎn)為A.已知$\frac{1}{|OF|}$+$\frac{1}{|OA|}$=$\frac{3e}{|FA|}$,其中O為原點(diǎn),e為橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)A的直線l與橢圓交于點(diǎn)B(B不在x軸上),垂直于l的直線與l交于點(diǎn)M,與y軸于點(diǎn)H,若BF⊥HF,且∠MOA≤∠MAO,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.?dāng)?shù)2與x的等比中項(xiàng)是±8,則x=32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)$\overrightarrow{i}$,$\overrightarrow{j}$是兩個(gè)不共線的向量,若$\overrightarrow{AB}$=2$\overrightarrow{i}$-3$\overrightarrow{j}$,$\overrightarrow{BC}$=-3$\overrightarrow{i}$+$\overrightarrow{j}$,$\overrightarrow{DC}$=3$\overrightarrow{i}$+6$\overrightarrow{j}$,則( 。
A.A、B、C三點(diǎn)共線B.A、B、D三點(diǎn)共線C.A、C、D三點(diǎn)共線D.B、C、D三點(diǎn)共線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)10x=3,10y=4.
(1)10x+2y=48.
(2)${10}^{-\frac{y}{2}}$=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案