在△ABC中,三個(gè)內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若a=2,b=2
2
,∠C=15°,則內(nèi)角A的值為( 。
A、30°
B、60°
C、30°或150°
D、60°或120°
考點(diǎn):余弦定理
專(zhuān)題:計(jì)算題,解三角形
分析:由余弦定理可得c2=8-4
3
,從而可得c=2
2-
3
,再次由余弦定理可得cosA的值為
3
2
,根據(jù)A的范圍,即可求出A的值.
解答: 解:∵由余弦定理可得:c2=a2+b2-2abcosC=4+8-2×2×2
2
×
cos15°
∴c2=8-4
3

∴c=2
2-
3

∴由余弦定理可得:cosA=
c2+b2-a2
2bc
=
8-4
3
+8-4
2×2
2
×2
2-
3
=
3-
3
2(
3
-1)
=
3
2

∵0<A<π
∴A=30°
故選:A.
點(diǎn)評(píng):本題主要考察了余弦定理在解三角形中的應(yīng)用,計(jì)算量比較大,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)i為虛數(shù)單位,則復(fù)數(shù)z=
1+i
i
在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在的象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知半徑為2的圓C滿足:①圓心在y軸的正半軸上;②它截x軸所得的弦長(zhǎng)是2
3
,
(1)求圓C的方程;
(2)若直線l經(jīng)過(guò)點(diǎn)P(2,-3),且與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合U=R,A={x|1≤x≤4},B={x|(x+2)(x-3)<0},C={x|m+1<x<2m-1}
(1)求A∪B,(CUA)∩B.
(2)若C⊆(A∪B),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)訄AC過(guò)點(diǎn)M(0,
3
),且與圓N:x2+(y+
3
)2
=16相內(nèi)切.
(1)求圓心C的軌跡方程;
(2)設(shè)點(diǎn)A(1,0),點(diǎn)B在拋物線:y=x2+h(h∈R)上,以點(diǎn)B為切點(diǎn)作這條拋物線的切線l.使直線l與(1)中圓心C的軌跡相交于E,F(xiàn)兩點(diǎn),若線段AB的中點(diǎn)與線段EF的中點(diǎn)橫坐標(biāo)相等,求h的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在單調(diào)遞減的等比數(shù)列{an}中,a1=
1
16
,若
5
4
a2是a1,a3的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2a1+log2a2+…+log2an,求數(shù)列{
1
bn
}的前項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

 如圖是一個(gè)樣本數(shù)據(jù)的頻率分布直方圖,根據(jù)頻率分布直方圖,解答下列問(wèn)題.
(Ⅰ)求圖中x的值;
(Ⅱ)根據(jù)直方圖,估計(jì)數(shù)據(jù)的眾數(shù)和平均數(shù)(寫(xiě)出估計(jì)值、主要估計(jì)依據(jù)和方法);
(Ⅲ)已知分布在第一組中有10個(gè)數(shù)據(jù),求第三組和第四組數(shù)據(jù)個(gè)數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,貨輪在海上以35nmile/h的速度沿著方位角(從指北方向順時(shí)針轉(zhuǎn)到目標(biāo)方向線的水平角)為148°的方向航行.為了確定船位,在B點(diǎn)觀察燈塔A的方位角是126°,航行半小時(shí)后到達(dá)C點(diǎn),觀察燈塔A的方位角是78°.求貨輪到達(dá)C點(diǎn)時(shí)與燈塔A的距離(精確到0.01nmile).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a,b都是正數(shù),且滿足
1
a
+
4
b
=1則使a+b>c恒成立的實(shí)數(shù)c的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案