【題目】根據(jù)某電子商務(wù)平臺(tái)的調(diào)查統(tǒng)計(jì)顯示,參與調(diào)查的位上網(wǎng)購物者的年齡情況如右圖.

1已知、、三個(gè)年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列,求的值;

2該電子商務(wù)平臺(tái)將年齡在之間的人群定義為高消費(fèi)人群,其他的年齡段定義為潛在消費(fèi)人群,為了鼓勵(lì)潛在消費(fèi)人群的消費(fèi),該平臺(tái)決定發(fā)放代金券,高消費(fèi)人群每人發(fā)放元的代金券,潛在消費(fèi)人群每人發(fā)放元的代金券.已經(jīng)采用分層抽樣的方式從參與調(diào)查的位上網(wǎng)購物者中抽取了人,現(xiàn)在要在這人中隨機(jī)抽取人進(jìn)行回訪,求此三人獲得代金券總和的分布列與數(shù)學(xué)期望.

【答案】1;2分布列略,186.

【解析】

試題分析:1由于五個(gè)組的頻率之和等于1,即五個(gè)矩形的面積之和為1,即求得的知;

2由已知高消費(fèi)人群所占比例為,潛在消費(fèi)人群的比例為,由分層抽樣的性質(zhì)知抽出的人中,高消費(fèi)人群有人,潛在消費(fèi)人群有人,隨機(jī)抽取的三人中代金券總和可能的取值為:,由離散隨機(jī)變量概率公式列得分布列,繼而求得數(shù)學(xué)期望.

試題解析:1由于五個(gè)組的頻率之和等于1,故:

又因?yàn)?/span>、三個(gè)年齡段的上網(wǎng)購物者人數(shù)成等差數(shù)列

所以

聯(lián)立解出

3由已知高消費(fèi)人群所占比例為,潛在消費(fèi)人群的比例為

由分層抽樣的性質(zhì)知抽出的人中,高消費(fèi)人群有人,潛在消費(fèi)人群有人,

隨機(jī)抽取的三人中代金券總和可能的取值為:

;

;

列表如下:

數(shù)學(xué)期望

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中, ,沿對(duì)角線折起,使點(diǎn)移到點(diǎn),且在平面上的射影恰好落在上.

(1)求證:

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地?cái)M建一座長(zhǎng)為640米的大橋,假設(shè)橋墩等距離分布,經(jīng)設(shè)計(jì)部門測(cè)算,兩端橋墩造價(jià)總共為100萬元,當(dāng)相鄰兩個(gè)橋墩的距離為米時(shí)(其中).中間每個(gè)橋墩的平均造價(jià)為萬元,橋面每1米長(zhǎng)的平均造價(jià)為萬元.

(1)試將橋的總造價(jià)表示為的函數(shù)

(2)為使橋的總造價(jià)最低,試問這座大橋中間(兩端橋墩除外)應(yīng)建多少個(gè)橋墩?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),證明: 為偶函數(shù);

(2)若上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(3)若,求實(shí)數(shù)的取值范圍,使上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分15分)已知橢圓過點(diǎn),離心率為.

)求橢圓的標(biāo)準(zhǔn)方程;

)設(shè)分別為橢圓的左、右焦點(diǎn),過的直線與橢圓交于不同兩點(diǎn),記的內(nèi)切圓的面積為,求當(dāng)取最大值時(shí)直線的方程,并求出最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)已知點(diǎn),和平面內(nèi)一點(diǎn),過點(diǎn)任作直線與橢圓相交于兩點(diǎn),設(shè)直線的斜率分別為,,試求滿足的關(guān)系式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1)當(dāng)為常數(shù),且在區(qū)間變化時(shí),求的最小值;

2)證明:對(duì)任意的,總存在,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商店為了更好地規(guī)劃某種商品進(jìn)貨的量,該商店從某一年的銷售數(shù)據(jù)中,隨機(jī)抽取了組數(shù)據(jù)作為研究對(duì)象,如下圖所示((噸)為該商品進(jìn)貨量, (天)為銷售天數(shù)):

(Ⅰ)根據(jù)上表數(shù)據(jù)在下列網(wǎng)格中繪制散點(diǎn)圖:

(Ⅱ)根據(jù)上表提供的數(shù)據(jù),求出關(guān)于的線性回歸方程;

(Ⅲ)根據(jù)(Ⅱ)中的計(jì)算結(jié)果,若該商店準(zhǔn)備一次性進(jìn)貨該商品噸,預(yù)測(cè)需要銷售天數(shù);

參考公式和數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】地自來苯超標(biāo),當(dāng)?shù)刈詠硭緦?duì)水質(zhì)檢測(cè)后,決定在水中投放一種藥劑來凈化水質(zhì),已知每投放質(zhì)量為藥劑后,經(jīng)過該藥劑在水中釋放的濃度毫克/升)滿足,其中,當(dāng)藥劑在水中的濃度不低于5(毫/升)時(shí)稱為有效凈化;當(dāng)藥劑在水中的濃度不低于5(毫克/升)且不高于10(毫克/升時(shí)稱為最佳凈化.

如果投放的藥劑質(zhì)量為試問自來水達(dá)到有效凈化一共可持續(xù)幾天?

如果投放的藥劑質(zhì)量,為了使在9天(從投放藥劑算起包括9天)之內(nèi)的自來水達(dá)到最佳凈化,試確定應(yīng)該投放的藥劑質(zhì)量最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案