數(shù)列{an}的前n項(xiàng)和為Sn=n2-2n-1,則數(shù)列{an}的通項(xiàng)公式an=
 
考點(diǎn):數(shù)列的函數(shù)特性
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:利用“當(dāng)n=1時(shí),a1=S1;當(dāng)n≥2時(shí),an=Sn-Sn-1”即可得出.
解答: 解:當(dāng)n≥2時(shí),an=Sn-Sn-1=n2-2n-1-[(n-1)2-2(n-1)-1]=2n-3,
當(dāng)n=1時(shí),a1=S1=1-2-1=-2,不適合上式,
∴數(shù)列{an}的通項(xiàng)公式an=
-2,(n=1)
2n-3,(n>1)
點(diǎn)評(píng):本題考查數(shù)列{an}的通項(xiàng)公式與前n項(xiàng)和為Sn的關(guān)系式,熟練掌握“當(dāng)n=1時(shí),a1=S1;當(dāng)n≥2時(shí),an=Sn-Sn-1”是解題的關(guān)鍵,注意驗(yàn)證n=1時(shí)是否適合.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l,過(guò)F的直線(xiàn)交拋物線(xiàn)于A(x1,y1)、B(x2,y2)兩點(diǎn),AC垂直準(zhǔn)線(xiàn)于C,BD垂直準(zhǔn)線(xiàn)于D,又O為原點(diǎn).
(1)證明:CF⊥DF      
(2)A、O、D三點(diǎn)共線(xiàn)    
(3)
1
AF
+
1
BF
=
2
p

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義函數(shù)f(x)=[x•[x]],其中[x]表示不超過(guò)x的最大整數(shù),當(dāng)x∈[0,n)(n∈N*)時(shí),設(shè)函數(shù)f(x)的值域?yàn)榧螦,記A中的元素個(gè)數(shù)為an,則
an+49
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果三棱錐A-BCD的底面BCD是正三角形,頂點(diǎn)A在底面BCD上的射影是△BCD的中心,則這樣的三棱錐稱(chēng)為正三棱錐.給出下列結(jié)論:
①正三棱錐所有棱長(zhǎng)都相等;
②正三棱錐至少有一組對(duì)棱(如棱AB與CD)不垂直;
③當(dāng)正三棱錐所有棱長(zhǎng)都相等時(shí),該棱錐內(nèi)任意一點(diǎn)到它的四個(gè)面的距離之和為定值;
④若正三棱錐所有棱長(zhǎng)均為2
2
,則該棱錐外接球的表面積等于12π.
⑤若正三棱錐A-BCD的側(cè)棱長(zhǎng)均為2,一個(gè)側(cè)面的頂角為40°,過(guò)點(diǎn)B的平面分別交側(cè)棱AC,AD于M,N.則△BMN周長(zhǎng)的最小值等于2
3

以上結(jié)論正確的是
 
(寫(xiě)出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)經(jīng)過(guò)點(diǎn)P(-2,3)且傾斜角為45°,求直線(xiàn)的斜截式方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若a2-b2=
2
bc,sinC=2
2
sinB,則A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

焦點(diǎn)在x軸上,短軸長(zhǎng)為2,離心率為
2
2
,橢圓C的方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn)的橢圓C的右焦點(diǎn)為F(1,0),離心率等于
1
2
,則C的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=π,則f(2π)=( 。
A、2πB、4πC、πD、x

查看答案和解析>>

同步練習(xí)冊(cè)答案