20.設(shè)lg2=a,lg3=b,則log125=( 。
A.$\frac{1-a}{2a+b}$B.$\frac{1-a}{a+2b}$C.$\frac{1+a}{a+2b}$D.$\frac{1+a}{2a+b}$

分析 利用對數(shù)的換底公式、對數(shù)的運(yùn)算性質(zhì)即可得出.

解答 解:∵lg2=a,lg3=b,
則log125=$\frac{1-lg2}{lg3+2lg2}$=$\frac{1-a}{2a+b}$.
故選:A.

點(diǎn)評 本題考查了對數(shù)的換底公式、對數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)ω>0,若函數(shù)f(x)=2sinωx在[-$\frac{π}{3}$,$\frac{π}{4}$]上單調(diào)遞增,則ω的取值范圍是( 。
A.(0,$\frac{1}{2}$]B.(1,$\frac{3}{2}$]C.[0,$\frac{3}{2}$]D.(0,$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.曲線$\frac{{x}^{2}}{n}$-y2=1(n>1)的兩焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在雙曲線上,且滿足PF1+PF2=2$\sqrt{n+2}$,則△PF1F2的面積為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列說法正確的是(  )
A.第二象限角比第一象限角大
B.60°角與600°角是終邊相同角
C.三角形的內(nèi)角是第一象限角或第二象限角
D.將表的分針撥慢10分鐘,則分針轉(zhuǎn)過的角的弧度數(shù)為$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=x-$\frac{4}{x}$,g(x)=x2-2mx+2.
( I)證明f(x)在(0,+∞)上為增函數(shù);
( II)對任意的實(shí)數(shù)x1,x2∈[1,2],都有f(x1)≤g(x2),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=lg($\frac{2}{1-x}$-a)的圖象關(guān)于原點(diǎn)對稱,則a等于( 。
A.1B.0C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.函數(shù)f(x)=loga(3-ax)(a>0,a≠1)
(1)當(dāng)a=3時(shí),求函數(shù)f(x)的定義域;
(2)若g(x)=f(x)-loga(3+ax),請判定g(x)的奇偶性;
(3)是否存在實(shí)數(shù)a,使函數(shù)f(x)在[2,3]遞增,并且最大值為1,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在體積為72的直三棱柱ABC-A1B1C1中,AB=3,AC=4,AA1=12.
(1)求角∠BAC的大;
(2)若該三棱柱的六個(gè)頂點(diǎn)都在球O的球面上,求球O的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知數(shù)列{an}滿足:a1<0,$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{1}{3}$,則數(shù)列{an}是( 。
A.遞增數(shù)列B.遞減數(shù)列C.擺動(dòng)數(shù)列D.不確定

查看答案和解析>>

同步練習(xí)冊答案