分析 利用二項(xiàng)展開式的通項(xiàng)公式求出展開式的通項(xiàng),令x的指數(shù)為4,求出r的值,將r的值代入通項(xiàng)求出展開式中含x4項(xiàng)的系數(shù)
解答 解:展開式的通項(xiàng)為Tr+1=C6r(-2)rx${\;}^{18-\frac{7}{2}r}$,
令得18-$\frac{7}{2}$r=4,解得r=4,
∴展開式中含x4項(xiàng)的系數(shù)為(-2)4C64=240,
故答案為:240.
點(diǎn)評(píng) 解決二項(xiàng)展開式的特定項(xiàng)問題,應(yīng)該利用的工具是利用二項(xiàng)展開式的通項(xiàng)公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $y=4sin(2x+\frac{π}{6})$ | B. | $y=-2sin(2x+\frac{π}{6})+2$ | C. | $y=-2sin(x+\frac{π}{3})+2$ | D. | $y=2sin(2x+\frac{π}{3})+2$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b1b2…bn=b1b2…b17-n。╪<17,n∈N*) | |
B. | b1b2…bn=b1b2…b18-n(n<18,n∈N*) | |
C. | b1+b2+…+bn=b1+b2+…+b17-n(n<17,n∈N*) | |
D. | b1+b2+…+bn=b1+b2-1+…+b18-n(n<18,n∈N*) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)=x2(x∈R)存在1級(jí)“理想?yún)^(qū)間” | |
B. | 函數(shù)f(x)=ex(x∈R)不存在2級(jí)“理想?yún)^(qū)間” | |
C. | 函數(shù)f(x)=$\frac{4x}{{x}^{2}+1}$(x≥0)存在3級(jí)“理想?yún)^(qū)間” | |
D. | 函數(shù)f(x)=tanx,x∈(-$\frac{π}{2}$,$\frac{π}{2}$)不存在4級(jí)“理想?yún)^(qū)間” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 5 | C. | 2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com