【題目】如圖,在三棱錐中,平面平面,,點(diǎn),,分別為線段,,的中點(diǎn),點(diǎn)是線段的中點(diǎn).求證:
(1)平面;
(2).
【答案】(1)見解析;(2)見解析
【解析】
(1)連AF交BE于Q,連QO,推導(dǎo)出Q是△PAB的重心,從而FG∥QO,由此能證明FG∥平面EBO.
(2)推導(dǎo)出BO⊥AC,從而BO⊥面PAC,進(jìn)而BO⊥PA,再求出OE⊥PA,由此能證明PA⊥平面EBO,利用線面垂直的性質(zhì)可證PA⊥BE.
(1)連接AF交BE于Q,連接QO,
因?yàn)?/span>E,F分別為邊PA,PB的中點(diǎn),
所以Q為△PAB的重心,可得:2,
又因?yàn)?/span>O為線段AC的中點(diǎn),G是線段CO的中點(diǎn),
所以2,
于是,
所以FG∥QO,
因?yàn)?/span>FG平面EBO,QO平面EBO,
所以FG∥平面EBO.
(2)因?yàn)?/span>O為邊AC的中點(diǎn),AB=BC,
所以BO⊥AC,
因?yàn)槠矫?/span>PAC⊥平面ABC,平面PAC∩平面ABC=AC,BO平面ABC,
所以BO⊥平面PAC,
因?yàn)?/span>PA平面PAC,
所以BO⊥PA,
因?yàn)辄c(diǎn)E,O分別為線段PA,AC的中點(diǎn),
所以EO∥PC,
因?yàn)?/span>PA⊥PC,
所以PA⊥EO,
又BO∩OE=O,BO,EO平面EBO,
所以PA⊥平面EBO,
因?yàn)?/span>BE平面EBO,
所以PA⊥BE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題對(duì)任意實(shí)數(shù),不等式恒成立;命題方程表示焦點(diǎn)在軸上的雙曲線.
(1)若命題為真命題,求實(shí)數(shù)的取值范圍;
(2)若命題:“”為真命題,且“”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為偶函數(shù),且函數(shù)圖像的兩相鄰對(duì)稱軸間的距離為.
(1)求,及的值.
(2)將函數(shù)的圖像向右平移個(gè)單位,再將得到的圖像上每個(gè)點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的倍,縱坐標(biāo)不變,得到函數(shù)的圖像,求的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,、是兩個(gè)小區(qū)所在地,、到一條公路的垂直距離分別為,,兩端之間的距離為.
(1)某移動(dòng)公司將在之間找一點(diǎn),在處建造一個(gè)信號(hào)塔,使得對(duì)、的張角與對(duì)、的張角相等,試確定點(diǎn)的位置.
(2)環(huán)保部門將在之間找一點(diǎn),在處建造一個(gè)垃圾處理廠,使得對(duì)、所張角最大,試確定點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)過點(diǎn)且斜率為的直線與圓交于,兩點(diǎn).
(1)求的取值范圍;
(2)若,求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)營(yíng)的消費(fèi)品進(jìn)價(jià)每件14元,月銷售量(百件)與銷售價(jià)格p(元)的關(guān)系如下圖,每月各種開支2000元.
(1)寫出月銷售量(百件)與銷售價(jià)格p(元)的函數(shù)關(guān)系;
(2)寫出月利潤(rùn)y(元)與銷售價(jià)格p(元)的函數(shù)關(guān)系:
(3)當(dāng)商品價(jià)格每件為多少元時(shí),月利潤(rùn)最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中,,,O為AD中點(diǎn).
(1)求異面直線PB與CD所成角的余弦值;
(2)線段AD上是否存在點(diǎn)Q,使得它到平面PCD的距離為?若存在,求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的方程為,若直線上至少存在一點(diǎn),使得以該點(diǎn)為圓心,1為半徑的圓與圓有公共點(diǎn),則的最大值為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com