【題目】如圖,在三棱柱中,底面,△ABC是邊長(zhǎng)為的正三角形,,D,E分別為AB,BC的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在線段上是否存在一點(diǎn)M,使平面?說(shuō)明理由.
【答案】(Ⅰ)見(jiàn)證明;(Ⅱ) (Ⅲ)見(jiàn)解析
【解析】
(Ⅰ)推導(dǎo)出AA1⊥CD,CD⊥AB,由此能證明CD⊥平面AA1B1B.
(Ⅱ)取A1B1中點(diǎn)F,連結(jié)DF,如圖空間直角坐標(biāo)系D﹣xyz,利用向量法能求出二面角B﹣AE﹣B1的余弦值.
(Ⅲ)假設(shè)線段B1C1上存在點(diǎn)M,使BM⊥平面AB1E.則λ∈[0,1],使得.求出平面AB1法向量,利用向量法能求出在線段B1C1上不存在點(diǎn)M,使BM⊥平面AB1E.
(Ⅰ)證明:在三棱柱中,
因?yàn)?/span>底面,CD平面ABC,
所以.
又為等邊三角形,為的中點(diǎn),
所以.因?yàn)?/span>,
所以平面;
(Ⅱ)取中點(diǎn),連結(jié),則
因?yàn)?/span>,分別為, 的中點(diǎn),
所以.
由(Ⅰ)知,,
如圖建立空間直角坐標(biāo)系.
由題意得,,, ,,,,,
,.
設(shè)平面 法向量,
則即
令,則,.即.
平面BAE法向量.
因?yàn)?/span>,,,
所以
由題意知二面角為銳角,所以它的余弦值為.
(Ⅲ)解:在線段上不存在點(diǎn)M,使平面.理由如下.
假設(shè)線段上存在點(diǎn)M,使平面.則
,使得.
因?yàn)?/span>,所以.
又,所以.
由(Ⅱ)可知,平面法向量,
平面,當(dāng)且僅當(dāng),
即,使得.
所以 解得.
這與矛盾.
所以在線段上不存在點(diǎn)M,使平面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合,. 若,且對(duì)任意,均有,則集合中元素個(gè)數(shù)的最大值為( )
A. 5 B. 6 C. 11 D. 13
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)的極值點(diǎn);
(2)若,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的右頂點(diǎn)為A,下頂點(diǎn)為B,過(guò)A、O、B(O為坐標(biāo)原點(diǎn))三點(diǎn)的圓的圓心坐標(biāo)為.
(1)求橢圓的方程;
(2)已知點(diǎn)M在x軸正半軸上,過(guò)點(diǎn)B作BM的垂線與橢圓交于另一點(diǎn)N,若∠BMN=60°,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】北京地鐵八通線西起四惠站,東至土橋站,全長(zhǎng)18.964km,共設(shè)13座車(chē)站.目前八通線執(zhí)行2014年12月28日制訂的計(jì)價(jià)標(biāo)準(zhǔn),各站間計(jì)程票價(jià)(單位:元)如下:
四惠 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | |
四惠東 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 | ||
高碑店 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | p>5 | |||
傳媒大學(xué) | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | ||||
雙橋 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | |||||
管莊 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | ||||||
八里橋 | 3 | 3 | 3 | 3 | 4 | 4 | |||||||
通州北苑 | 3 | 3 | 3 | 3 | 3 | ||||||||
果園 | 3 | 3 | 3 | 3 | |||||||||
九棵樹(shù) | 3 | 3 | 3 | ||||||||||
梨園 | /p> | 3 | 3 | ||||||||||
臨河里 | 3 | ||||||||||||
土橋 | |||||||||||||
四惠 | 四惠東 | 高碑店 | 傳媒大學(xué) | 雙橋 | 管莊 | 八里橋 | 通州北苑 | 果園 | 九棵樹(shù) | 梨園 | 臨河里 | 土橋 |
(Ⅰ)在13座車(chē)站中任選兩個(gè)不同的車(chē)站,求兩站間票價(jià)不足5元的概率;
(Ⅱ)甲乙二人從四惠站上車(chē)乘坐八通線,各自任選另一站下車(chē)(二人可同站下車(chē)),記甲乙二人乘車(chē)購(gòu)票花費(fèi)之和為X元,求X的分布列;
(Ⅲ)若甲乙二人只乘坐八通線,甲從四惠站上車(chē),任選另一站下車(chē),記票價(jià)為元;乙從土橋站上車(chē),任選另一站下車(chē),記票價(jià)為元.試比較和的方差和大小.(結(jié)論不需要證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在區(qū)間上的最值;
(2)討論的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)試討論的單調(diào)性;
(Ⅱ)記的零點(diǎn)為,的極小值點(diǎn)為,當(dāng)時(shí),求證.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程是(為參數(shù)),以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且直線與曲線交于,兩點(diǎn)
(1)求曲線的普通方程及直線恒過(guò)的定點(diǎn)的坐標(biāo);
(2)在(1)的條件下,若,求直線的普通方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年寒假是特殊的寒假,因?yàn)榭箵粢咔槿w學(xué)生只能在家進(jìn)行網(wǎng)上在線學(xué)習(xí),為了研究學(xué)生在網(wǎng)上學(xué)習(xí)的情況,某學(xué)校在網(wǎng)上隨機(jī)抽取120名學(xué)生對(duì)線上教育進(jìn)行調(diào)查,其中男生與女生的人數(shù)之比為11:13,其中男生30人對(duì)于線上教育滿意,女生中有15名表示對(duì)線上教育不滿意.
(1)完成列聯(lián)表,并回答能否有99%的把握認(rèn)為對(duì)“線上教育是否滿意與性別有關(guān)”;
滿意 | 不滿意 | 總計(jì) | |
男生 | 20 | ||
女生 | 15 | ||
合計(jì) | 120 |
(2)從被調(diào)查的對(duì)線上教育滿意的學(xué)生中,利用分層抽樣抽取8名學(xué)生,再在8名學(xué)生中抽取3名學(xué)生,作線上學(xué)習(xí)的經(jīng)驗(yàn)介紹,其中抽取男生的個(gè)數(shù)為,求出的分布列及期望值.
參考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 0.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com