【題目】在直角坐標系中,直線l的參數(shù)方程為(t為參數(shù),),以坐標原點為極點,軸正半軸為極軸,取相同的長度單位建立極坐標系,曲線C的極坐標方程為.
(1)當時,寫出直線l的普通方程及曲線C的直角坐標方程;
(2)已知點,設直線l與曲線C交于A,B兩點,試確定的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】共享單車的投放,方便了市民短途出行,被譽為中國“新四大發(fā)明”之一.某市為研究單車用戶與年齡的相關程度,隨機調查了100位成人市民,統(tǒng)計數(shù)據如下:
不小于40歲 | 小于40歲 | 合計 | |
單車用戶 | 12 | y | m |
非單車用戶 | x | 32 | 70 |
合計 | n | 50 | 100 |
(1)求出列聯(lián)表中字母x、y、m、n的值;
(2)①從此樣本中,對單車用戶按年齡采取分層抽樣的方法抽出5人進行深入調研,其中不小于40歲的人應抽多少人?
②從獨立性檢驗角度分析,能否有以上的把握認為該市成人市民是否為單車用戶與年齡是否小于40歲有關.
下面臨界值表供參考:
P() | 0.15 | 0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】利用一半徑為4cm的圓形紙片(圓心為O)制作一個正四棱錐.方法如下:
(1)以O為圓心制作一個小的圓;
(2)在小的圓內制作一內接正方形ABCD;
(3)以正方形ABCD的各邊向外作等腰三角形,使等腰三角形的頂點落在大圓上(如圖);
(4)將正方形ABCD作為正四棱錐的底,四個等腰三角形作為正四棱錐的側面折起,使四個等腰三角形的頂點重合,問:要使所制作的正四棱錐體積最大,則小圓的半徑為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,底面為菱形的直四棱柱被過三點的平面截去一個三棱錐(圖一)得幾何體(圖二),E為的中點.
(1)點F為棱上的動點,試問平面與平面是否垂直?請說明理由;
(2)設,當點F為中點時,求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分13分)設數(shù)列的前項和為.已知, , .
(1)寫出的值,并求數(shù)列的通項公式;
(2)記為數(shù)列的前項和,求;
(3)若數(shù)列滿足, ,求數(shù)列的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)經過一年的新農村建設,農村的經濟收入增加了一倍.實現(xiàn)翻番.為更好地了解該地區(qū)農村的經濟收入變化情況,統(tǒng)計了該地區(qū)新農村建設前后農村的經濟收入構成比例.得到如下餅圖:
則下面結論中不正確的是
A. 新農村建設后,種植收入減少
B. 新農村建設后,其他收入增加了一倍以上
C. 新農村建設后,養(yǎng)殖收入增加了一倍
D. 新農村建設后,養(yǎng)殖收入與第三產業(yè)收入的總和超過了經濟收入的一半
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某小學隨機抽取100名同學,將他們的身高(單位:厘米)數(shù)據繪制成頻率分布直方圖(如圖),
(1)由圖中數(shù)據求a的值;
(2)若要從身高在[120,130),[130,140),[140,150]三組內的學生中,用分層抽樣的方法選取18人參加一項活動,則從身高在[140,150]內的學生中選取的人數(shù)應為多少?
(3)估計這所小學的小學生身高的眾數(shù),中位數(shù)(保留兩位小數(shù))及平均數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,焦距為.斜率為k的直線l與橢圓M有兩個不同的交點A,B.
(Ⅰ)求橢圓M的方程;
(Ⅱ)若,求 的最大值;
(Ⅲ)設,直線PA與橢圓M的另一個交點為C,直線PB與橢圓M的另一個交點為D.若C,D和點 共線,求k.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com