分析 利用等差數(shù)列的通項(xiàng)公式、函數(shù)的解析式即可得出.
解答 解:xn=$-\frac{5}{2}$-(n-1)=-$\frac{3+2n}{2}$.
yn=3xn+$\frac{13}{4}$=$-3×\frac{3+2n}{2}$+$\frac{13}{4}$=-$\frac{5+12n}{4}$.
∴Pn$(-\frac{3+2n}{2},-\frac{5+12n}{4})$.
故答案為:$(-\frac{3+2n}{2},-\frac{5+12n}{4})$.
點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式、函數(shù)的解析式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 3 | C. | 4 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[{\frac{7}{4},+∞})$ | B. | [2,+∞) | C. | [1,+∞) | D. | (-∞,-1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<a<1 | B. | 0≤a<1 | C. | 0<a≤1 | D. | 0<a≤1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,-2) | B. | (1,0) | C. | (1,-2) | D. | (0,2) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com