已知函數(shù)y=Asin(ω•x+φ)(A>0,ω>0,|φ|<
π
2
))的部分圖象如圖所示.
(1)請根據(jù)圖象求出y=Asin(ω•x+φ)的解析式;
(2)當(dāng)x∈[
5
6
π,
13
12
π]時,求出函數(shù)的最大值和最小值,并指出取得最值時x的值.
考點:由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)由函數(shù)的最值求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的解析式.
(2)由x∈[
5
6
π,
13
12
π],利用正弦函數(shù)的定義域和值域求得函數(shù)的最值.
解答: 解:(1)由圖得A=2,再根據(jù)T=
ω
=
12
+
12
 求得ω=2.
再根據(jù)五點法作圖可得2×
π
12
+φ=0,求得φ=-
π
6
,故函數(shù)的解析式為y=2sin(2x-
π
6
).
(2)∵x∈[
5
6
π,
13
12
π],∴2x-
π
6
∈[
2
,2π],
故當(dāng)2x-
π
6
=
2
時,sin(2x-
π
6
)取得最小值為-1,函數(shù)y取得最小值為-2;
當(dāng)2x-
π
6
=2π時,sin(2x-
π
6
)取得最大值為0,函數(shù)y取得最大值為 0.
點評:本題主要考查利用y=Asin(ωx+φ)的圖象特征,由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,正弦函數(shù)的定義域和值域,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=3,a3=4,則a5=(  )
A、3B、4C、5D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(1-2x)2012=a0+a1x+a2x2+…+a2012x2012,則(a0+a1)+(a1+a2)+(a2+a3)+…+(a2011+a2012)=(  )
A、1
B、22012
C、1-22012
D、2-22012

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為迎接高一新生報到,學(xué)校向高三甲、乙、丙、丁四個實驗班征召志愿者.統(tǒng)計如下:
班      級
志愿者人數(shù)45603015
為了更進一步了解志愿者的來源,采用分層抽樣的方法從上述四個班的志愿者中隨機抽取50名參加問卷調(diào)查.
(1)從參加問卷調(diào)查的50名志愿者中隨機抽取兩名,求這兩名來自同一個班級的概率;
(2)在參加問卷調(diào)查的50名志愿者中,從來自甲、丙兩個班級的志愿者中隨機抽取兩名,用X表示抽得甲班志愿者的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,a3=5,S3=21,數(shù)列bn=|an|,求數(shù)列{bn} 的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差不為0的等差數(shù)列{an}的首項為2,且a1,a2,a4成等比數(shù)列.
(1)求數(shù)列{an}的通項公式.
(2)令bn=
1
(an+1)2-1
,(n∈N+),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+mx2+nx-2的圖象過點(-1,-6),且函數(shù)g(x)=f′(x)+6x的圖象關(guān)于y軸對稱.
(Ⅰ)求m、n的值及函數(shù)y=f(x)的單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)y=f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=x+
1
x
在[2,3]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α,β(α<β)分別是二次方程ax2+bx+c=0和ax2-bx-c=0的非零根,求證:函數(shù)f(x)=
a
2
x2+bx+c總在區(qū)間(α,β)有零點.

查看答案和解析>>

同步練習(xí)冊答案