精英家教網 > 高中數學 > 題目詳情
等比數列{an}的前n項和為Sn,已知a2a3=2a1,且a4與2a7的等差中項為
5
4
,則S5=( 。
A、29B、31C、33D、36
考點:等比數列的性質
專題:等差數列與等比數列
分析:由題意可得a12q3=2a1,①a1q3+2a1q6=
5
2
,②,聯立①②可解得a1=16,q=
1
2
,代入求和公式計算可得.
解答: 解:設等比數列{an}的公比為q,
∵a2a3=2a1,∴a12q3=2a1,①
∵a4與2a7的等差中項為
5
4

∴a4+2a7=
5
2
,即a1q3+2a1q6=
5
2
,②
聯立①②可解得a1=16,q=
1
2
,
∴S5=
a1(1-q5)
1-q
=31
故選:B
點評:本題考查等比數列和等差數列的綜合應用,求出數列的首項和公比是解決問題的關鍵,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知定義域為R的函數f(x)=
b-2x
2x+a
是奇函數,并且在R上單調遞減.
(1)求a,b的值;
(2)若對于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知an=2,amn=16,則m的值為( 。
A、3
B、4
C、a3
D、a6

查看答案和解析>>

科目:高中數學 來源: 題型:

設集合A={x|y=lg(x-3)},B={x|x2-5x+5<0},則A∩B=( 。
A、∅
B、(3,
5+
5
2
C、(-2,1)
D、(4,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=ln(1+x)+
1-x
x
的定義域為( 。
A、(-1,0)∪(0,1]
B、(-1,1)
C、(-1,1]
D、[-1,0)∪(0,1]

查看答案和解析>>

科目:高中數學 來源: 題型:

已知全集U={2,4,6,8,9},A={2,4,9},則CUA=( 。
A、{2,4}
B、{6,8}
C、{9}
D、{6,8,9}

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,且過點(1,
3
2
);圓C2:x2+y2=
12
7

(Ⅰ)求橢圓C1的方程;
(Ⅱ)若直線l與圓C2相切,且交橢圓C1于A,B兩點,求|AB|的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數y=x3-2x2+x+3,求函數單調區(qū)間及極值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
ex-1
ex+1

(1)判斷函數f(x)的單調性,并給予證明;
(2)若f(x)>-m2+2bm-1對所有x∈R,b∈[-1,1]恒成立,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案