3.為得到y(tǒng)=cosx的圖象,只需將y=sin(x+$\frac{π}{6}$)的圖象( 。
A.向左平移$\frac{π}{6}$個(gè)單位B.向右平移$\frac{π}{6}$個(gè)單位
C.向左平移$\frac{π}{3}$個(gè)單位D.向右平移$\frac{π}{3}$個(gè)單位

分析 利用y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:將y=sin(x+$\frac{π}{6}$)的圖象向左平移$\frac{π}{3}$個(gè)單位可得y=sin(x+$\frac{π}{3}$+$\frac{π}{6}$)=cosx的圖象,
故選:C.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式的應(yīng)用,利用了y=Asin(ωx+φ)的圖象變換規(guī)律,統(tǒng)一這兩個(gè)三角函數(shù)的名稱,是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若sin2α=$\frac{2}{3}$,則sin2(α-$\frac{π}{4}$)=( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若一個(gè)三位數(shù)的十位數(shù)數(shù)字比個(gè)位數(shù)字和百位數(shù)字都大,則稱這個(gè)數(shù)為“凸數(shù)”,現(xiàn)從1,2,3,4,5,這五個(gè)數(shù)字中任取3個(gè)數(shù),組成無(wú)重復(fù)數(shù)字的三位數(shù),其中“凸數(shù)”有( 。
A.120個(gè)B.80個(gè)C.40個(gè)D.20個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=$\sqrt{3}$sinωxcosωx+cos2ωx+a(ω>0),其圖象相鄰對(duì)稱軸之間的距離為$\frac{π}{2}$,f(x)的最大值為$\frac{1}{2}$.
(Ⅰ)求ω和a;
(Ⅱ)將函數(shù)y=f(x)的圖象向左平移$\frac{π}{24}$個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)在[0,3π]上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若sinx=-$\frac{1}{3}$,x∈(-$\frac{π}{2}$,0),則x=-arcsin$\frac{1}{3}$.(結(jié)果用反三角函數(shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}的前n項(xiàng)和Sn,滿足2Sn=3n+1-3且a2=b1
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若cn=an•bn,設(shè)Tn為{cn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.等差數(shù)列{an}的前n項(xiàng)和為Sn,a10=40,a20=20,求:
①a1及an;
②若Sn=490,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.函數(shù)F(x)=(2x-2-x)•f(x),F(xiàn)(x)為偶函數(shù),則函數(shù)f(x)為( 。
A.偶函數(shù)B.奇函數(shù)C.非奇非偶函數(shù)D.既奇又偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知圓C與直線$x+y-2\sqrt{2}=0$相切,圓心在x軸上,且直線y=x被圓C截得的弦長(zhǎng)為$4\sqrt{2}$.
(1)求圓C的方程;
(2)過(guò)點(diǎn)M(-1,0)作斜率為k的直線l與圓C交于A,B兩點(diǎn),若直線OA與OB的斜率乘積為m,且$\frac{m}{k^2}=-3-\sqrt{2}$,求$\overrightarrow{OA}•\overrightarrow{OB}$的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案