分析 (1)由n=1時,b1=S1;n>1時,bn=Sn-Sn-1=,可得bn=3n,再由等差數(shù)列的通項公式可得an=2n-1;
(2)求得cn=an•bn=(2n-1)•3n,運用數(shù)列的求和方法:錯位相減法,結(jié)合等比數(shù)列的求和公式,化簡整理即可得到所求和.
解答 解:(1)2Sn=3n+1-3,即為Sn=$\frac{1}{2}$(3n+1-3),
當n=1時,b1=S1=3,
n>1時,bn=Sn-Sn-1=$\frac{1}{2}$(3n+1-3)-$\frac{1}{2}$(3n-3)=3n,
綜上可得bn=3n,
由a2=b1=3,d=2,可得a1=1,
an=a1+(n-1)d=1+2(n-1)=2n-1;
(2)cn=an•bn=(2n-1)•3n,
Tn=1•3+3•32+5•33+…+(2n-1)•3n,
即有3Tn=1•32+3•33+5•34+…+(2n-1)•3n+1,
兩式相減可得,-2Tn=3+2(32+33+34+…+3n)-(2n-1)•3n+1
=3+2•$\frac{9(1-{3}^{n-1})}{1-3}$-(2n-1)•3n+1,
化簡可得Tn=3+(n-1)•3n+1.
點評 本題考查等差數(shù)列和等比數(shù)列的通項公式和求和公式的運用,考查數(shù)列的求和方法:錯位相減法,考查化簡整理的運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 向左平移$\frac{π}{6}$個單位 | B. | 向右平移$\frac{π}{6}$個單位 | ||
C. | 向左平移$\frac{π}{3}$個單位 | D. | 向右平移$\frac{π}{3}$個單位 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2p | B. | p | C. | $\frac{p}{2}$ | D. | $\frac{p}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com