【題目】為了調(diào)查高中學(xué)生喜歡打羽毛球與性別是否有關(guān),調(diào)查人員就“是否喜歡打羽毛球”這個問題,分別隨機(jī)調(diào)查了名女生和名男生,根據(jù)調(diào)查結(jié)果得到如圖所示的等高條形圖:
(1)完成下列列聯(lián)表:
喜歡打羽毛球 | 不喜歡打羽毛球 | 總計(jì) | |
女生 | |||
男生 | |||
總計(jì) |
(2)能否在犯錯誤的概率不超過的前提下認(rèn)為喜歡打羽毛球與性別有關(guān).
參考數(shù)表:
參考公式:,其中.
【答案】(1)見解析(2) 不能在犯錯誤的概率不超過的前提下認(rèn)為喜歡打羽毛球與性別有關(guān).
【解析】分析:(1)根據(jù)等高條形圖計(jì)算可得女生不喜歡打羽毛球的人數(shù)為,男性不喜歡打羽毛球的人數(shù)為.據(jù)此完成列聯(lián)表即可.
(2)結(jié)合(1)中的列聯(lián)表計(jì)算可得,則不能在犯錯誤的概率不超過的前提下認(rèn)為喜歡打羽毛球與性別有關(guān).
詳解:(1)根據(jù)等高條形圖,女生不喜歡打羽毛球的人數(shù)為,
男性不喜歡打羽毛球的人數(shù)為.
填寫列聯(lián)表如下:
喜歡打羽毛球 | 不喜歡打羽毛球 | 總計(jì) | |
女生 | |||
男生 | |||
總計(jì) |
(2)根據(jù)列聯(lián)表中數(shù)據(jù),計(jì)算
,
所以不能在犯錯誤的概率不超過的前提下認(rèn)為喜歡打羽毛球與性別有關(guān).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】針對國家提出的延遲退休方案,某機(jī)構(gòu)進(jìn)行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:
支持 | 保留 | 不支持 | |
歲以下 | |||
歲以上(含歲) |
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個人,已知從持“不支持”態(tài)度的人中抽取了人,求的值;
(2)在接受調(diào)查的人中,有人給這項(xiàng)活動打出的分?jǐn)?shù)如下:,,,,,,,,,,把這個人打出的分?jǐn)?shù)看作一個總體,從中任取一個數(shù),求該數(shù)與總體平均數(shù)之差的絕對值超過的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)營一批進(jìn)價(jià)是每件30元的商品,在市場銷售中發(fā)現(xiàn),此商品的銷售單價(jià)元與日銷售量件之間有如下關(guān)系
銷售單價(jià)(元) | 30 | 40 | 45 | 50 |
日銷售量(件) | 60 | 30 | 15 | 0 |
(1)在平面直角坐標(biāo)系中,根據(jù)表中提供的數(shù)據(jù)描出實(shí)數(shù)對對應(yīng)的點(diǎn),并確定與的一個函數(shù)關(guān)系式;
(2)設(shè)經(jīng)營此商品的日銷售利潤為元,根據(jù)上述關(guān)系式寫出關(guān)于的函數(shù)關(guān)系式,
并指出銷售單價(jià)為多少時,才能獲得最大日銷售利潤。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果定義在上的函數(shù),對任意的,都有, 則稱該函數(shù)是“函數(shù)”.
(I)分別判斷下列函數(shù):①;②; ③,是否為“函數(shù)”?(直接寫出結(jié)論)
(II)若函數(shù)是“函數(shù)”,求實(shí)數(shù)的取值范圍.
(III)已知是“函數(shù)”,且在上單調(diào)遞增,求所有可能的集合與
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一個算法流程圖,當(dāng)輸入的x=5時,那么運(yùn)行算法流程圖輸出的結(jié)果是( )
A.10
B.20
C.25
D.35
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)參加一項(xiàng)射擊比賽游戲,其中任何一人每射擊一次擊中目標(biāo)得2分,未擊中目標(biāo)得0分.若甲、乙兩人射擊的命中率分別為 和P,且甲、乙兩人各射擊一次得分之和為2的概率為 .假設(shè)甲、乙兩人射擊互不影響,則P值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】三棱錐S﹣ABC及其三視圖中的正視圖和側(cè)視圖如圖所示,則該三棱錐S﹣ABC的外接球的表面積為( )
A.32π
B.
C.
D. π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且滿足sinA+sinB=[cosA﹣cos(π﹣B)]sinC.
(1)試判斷△ABC的形狀,并說明理由;
(2)若a+b+c=1+ ,試求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1
(Ⅰ)設(shè)為P為AC的中點(diǎn),Q為AB上一點(diǎn),使PQ⊥OA,并計(jì)算 的值;
(Ⅱ)求二面角O﹣AC﹣B的平面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com