17.已知圓x2+y2+2x-3=0的圓心為C,點(diǎn)A為直線ax-y-5a+4=0上的點(diǎn),若該圓上有一點(diǎn)B且∠CBA=$\frac{π}{6}$,則實(shí)數(shù)a的取值范圍為0≤a≤$\frac{12}{5}$.

分析 由題意,從直線上的點(diǎn)向圓上的點(diǎn)連線成角,當(dāng)且僅當(dāng)兩條線均為切線時(shí)才是最大的角,此時(shí)CA=4,利用圓上有一點(diǎn)B且∠CBA=$\frac{π}{6}$,可得圓心到直線的距離d=$\frac{|-6a+4|}{\sqrt{{a}^{2}+1}}$≤4,進(jìn)而得出答案.

解答 解:由題意,從直線上的點(diǎn)向圓上的點(diǎn)連線成角,當(dāng)且僅當(dāng)兩條線均為切線時(shí)才是最大的角,此時(shí)CA=4.
∵圓上有一點(diǎn)B且∠CBA=$\frac{π}{6}$,
∴圓心到直線的距離d=$\frac{|-6a+4|}{\sqrt{{a}^{2}+1}}$≤4,
∴0≤a≤$\frac{12}{5}$,
故答案為:0≤a≤$\frac{12}{5}$.

點(diǎn)評(píng) 本題考查了直線與圓相切的性質(zhì)、點(diǎn)到直線的距離的計(jì)算公式、數(shù)形結(jié)合思想方法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.從區(qū)間[0,1]內(nèi)任取兩個(gè)數(shù),則這兩個(gè)數(shù)的和不大于$\frac{5}{6}$的概率是為$\frac{25}{72}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.?dāng)?shù)列{an}滿足:a1=1,an+1+an=2n-1,Sn為{an}的前n項(xiàng)和,則S2n+1=2n2+n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,△ABC的三個(gè)頂點(diǎn)均在函數(shù)y=$\frac{1}{x}$的圖象上,試判斷△ABC的垂心(△ABC三條高線的交點(diǎn)叫△ABC的垂心)H是否也在y=$\frac{1}{x}$的圖象上,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.拋物線的頂點(diǎn)在原點(diǎn),對稱軸是y軸,焦點(diǎn)在2x+3y-6=0上,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若f(t)=$\frac{t}{cosx}$,則f′(t)等于( 。
A.$\frac{t}{co{s}^{2}x}$B.-$\frac{t}{co{s}^{2}x}$C.$\frac{1}{cosx}$D.$\frac{t}{sinx}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求函數(shù)f(x)=$\sqrt{-sinx}$+$\sqrt{tanx-1}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=2cosxsin(x+$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$.
(1)求函數(shù)f(x)的最小正周期和初相;
(2)若關(guān)于x的方程f(x)+log2k=0在區(qū)間(0,$\frac{5}{12}$π]上總有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖所示,在直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,∠ACB=90°,側(cè)棱AA1=2,D,E分別是CC1與A1B的中點(diǎn),點(diǎn)E在平面ABD上的射影是△ABD的重心G.
(1)求A1B與平面ABD所成角的余弦值;
(2)求點(diǎn)A1到平面AED的距離.

查看答案和解析>>

同步練習(xí)冊答案