14.實(shí)數(shù)x,y滿足x2-2xy+2y2=2,則x2+2y2的最小值為4-2$\sqrt{2}$.

分析 化簡(jiǎn)可得(x-y)2+y2=2,令x-y=$\sqrt{2}$cosa,y=$\sqrt{2}$sina,從而利用三角恒等變換化簡(jiǎn)求最值.

解答 解:∵x2-2xy+2y2=2,
∴(x-y)2+y2=2,
∴x-y=$\sqrt{2}$cosa,y=$\sqrt{2}$sina,
∴x=$\sqrt{2}$cosa+$\sqrt{2}$sina,
∴x2+2y2=($\sqrt{2}$cosa+$\sqrt{2}$sina)2+2($\sqrt{2}$sina)2
=2+4sinacosa+4sin2a
=2+2sin2a+2-2cos2a
=4+2$\sqrt{2}$sin(2a-$\frac{π}{4}$),
故當(dāng)sin(2a-$\frac{π}{4}$)=-1時(shí)有最小值4-2$\sqrt{2}$,
故答案為:4-2$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了學(xué)生的化簡(jiǎn)運(yùn)算能力,同時(shí)考查了整體思想與轉(zhuǎn)化思想的應(yīng)用及換元法的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知$\overrightarrow{OA}$=(6,-2),$\overrightarrow{OB}$=(-1,2),若$\overrightarrow{OC}$⊥$\overrightarrow{OB}$,且$\overrightarrow{BC}$∥$\overrightarrow{OA}$.
(1)求$\overrightarrow{BC}$;
(2)求$\overrightarrow{BC}$與$\overrightarrow{OB}$的夾角θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an},a1=$\frac{1}{2}$,an+1=$\frac{{3{a_n}}}{{{a_n}+3}}$.
求:(1)寫出a2,a3,a4,a5;
(2)求出數(shù)列{an}的通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{2^{1-x}},x≤1\\ 1-{log_2}x,x>1\end{array}$,則f[f(-1)]=( 。
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an},{bn}均為各項(xiàng)都不相等的數(shù)列,Sn為{an}的前n項(xiàng)和,an+1bn=Sn+1(n∈N).
(1)若a1=1,bn=$\frac{n}{2}$,求a4的值;
(2)若{an}是公比為q的等比數(shù)列,求證:存在實(shí)數(shù)λ,使得{bn+λ}為等比數(shù)列;
(3)若{an}的各項(xiàng)都不為零,{bn}是公差為d的等差數(shù)列,求證:a2,a3,…,an…成等差數(shù)列的充要條件是d=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.不等式組$\left\{\begin{array}{l}x≥2\\ x+y≥6\\ x-2y≤0\end{array}\right.$所表示的平面區(qū)域?yàn)棣福糁本ax-y+a+1=0與Ω有公共點(diǎn),則實(shí)數(shù)a的取值范圍是[$\frac{1}{5}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.i是虛數(shù)單位,復(fù)數(shù)$\frac{{2+{i^3}}}{1-i}$=( 。
A.$\frac{3+3i}{2}$B.$\frac{1+3i}{2}$C.$\frac{1+i}{2}$D.$\frac{3+i}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an}各項(xiàng)均不為0,其前n項(xiàng)和為Sn,且a1=1,2Sn=anan+1,則Sn=$\frac{n(n+1)}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知無窮數(shù)列{an}滿足an+1=p•an+$\frac{q}{a_n}$(n∈N*).其中p,q均為非負(fù)實(shí)數(shù)且不同時(shí)為0.
(1)若p=$\frac{1}{2}$,q=2,且a3=$\frac{41}{20}$,求a1的值;
(2)若a1=5,p•q=0,求數(shù)列{an}的前n項(xiàng)和Sn;
(3)若a1=2,q=1,且{an}是單調(diào)遞減數(shù)列,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案