15.若函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1-x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( 。
A.函數(shù)f(x)有極大值f(-2),無極小值B.函數(shù)f(x)有極大值f(1),無極小值
C.函數(shù)f(x)有極大值f(-2)和極小值f(1)D.函數(shù)f(x)有極大值f(1)和極小值f(-2).

分析 函數(shù)y=(1-x)f′(x)的圖象如圖所示,可得x>1時(shí),f′(x)<0;-2<x<1時(shí),f′(x)>0;x<-2時(shí),f′(x)>0.即可判斷出結(jié)論.

解答 解:函數(shù)y=(1-x)f′(x)的圖象如圖所示,
∴x>1時(shí),f′(x)<0;-2<x<1時(shí),f′(x)>0;x<-2時(shí),f′(x)>0.
∴函數(shù)f(x)有極大值f(1),無極小值.
故選:B.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究函數(shù)的極值、數(shù)形結(jié)合思想方法,考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}滿足a1=1,an+1=2an+1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明:$\frac{n}{2}$-$\frac{1}{3}$<$\frac{{a}_{1}}{{a}_{2}}$+$\frac{{a}_{2}}{{a}_{3}}$+…+$\frac{{a}_{n}}{{a}_{n+1}}$≤$\frac{n}{2}$-$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人,女性中有43人主要的休閑方式是看電視,其余人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,其余人主要的休閑方式是運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
看電視運(yùn)動(dòng)合計(jì)
男性21
女性4370
合計(jì)124
(2)能否在犯錯(cuò)誤的概率不超過0.01的前提下,認(rèn)為休閑方式與性別有關(guān)系.
參考臨界值表
P(k2>k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.845.0246.6357.87910.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\frac{1}{3}{x^3}$+ax2+(a+2)x-3有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(-1,2)B.(-∞,-1)∪(2,+∞)C.[-1,2]D.(-∞,-1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{lnx}{1-x}$,ϕ(x)=(x-1)2•f′(x)
(1)若函數(shù)ϕ(x)在區(qū)間(3m,m+$\frac{1}{2}$)上單調(diào)遞減,求實(shí)數(shù)m的取值范圍;
(2)若對(duì)任意的x∈(0,1),恒有(1+x)•f(x)+2a<0(a>0),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若直線x+y-1=0與拋物線y=2x2交于A,B兩點(diǎn),則點(diǎn)M(1,0)到A,B兩點(diǎn)的距離之積為( 。
A.$4\sqrt{2}$B.$2\sqrt{2}$C.4D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=3+2cosα\\ y=2sinα\end{array}\right.$(α為參數(shù)).以原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.直線l的極坐標(biāo)方程為ρcosθ+ρsinθ+1=0.
(1)寫出圓C的普通方程;
(2)將直線l的極坐標(biāo)方程化為直角坐標(biāo)方程;
(3)過直線l的任意一點(diǎn)P作直線與圓C交于A,B兩點(diǎn),求|PA|•|PB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖是函數(shù)y=f(x)圖象的一部分,則函數(shù)y=f(x)的解析式可能為( 。 
A.y=sin(x+$\frac{π}{6}$)B.y=sin(2x-$\frac{π}{6}$)C.y=cos(4x-$\frac{π}{3}$)D.y=cos(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.一動(dòng)圓圓心在拋物線x2=4y上.該圓過點(diǎn)(0,1).且與定直線l相切,則直線l的方程為y=-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案