已知函數(shù)f(x)=alnx+x在區(qū)間[2,3]上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是    
【答案】分析:通過解f′(x)求單調(diào)區(qū)間,轉(zhuǎn)化為恒成立問題求a的取值范圍
解答:解析:∵f(x)=alnx+x,∴f′(x)=+1.
又∵f(x)在[2,3]上單調(diào)遞增,
+1≥0在x∈[2,3]上恒成立,
∴a≥(-x)max=-2,∴a∈[-2,+∞).
故答案為:[-2,+∞)
點(diǎn)評:已知函數(shù)單調(diào)性,求參數(shù)范圍問題的常見解法;設(shè)函數(shù)f(x)在(a,b)上可導(dǎo),若f(x)在(a,b)上是增函數(shù),則可得f′(x)≥0,從而建立了關(guān)于待求參數(shù)的不等式,同理,若f(x)在(a,b)上是減函數(shù),,則可得f′(x)≤0.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案