19.函數(shù)f(x)=6cos2$\frac{ωx}{2}$+$\sqrt{3}$sinωx-3(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B,C為圖象與x軸的交點(diǎn),且△ABC為正三角形,則ω=$\frac{π}{4}$.

分析 由降冪公式和三角恒等變換公式化簡(jiǎn)f(x),由正三角形知道高和底,由此知道周期,得到ω.

解答 解:∵f(x)=6cos2$\frac{ωx}{2}$+$\sqrt{3}$sinωx-3(ω>0)
=3cosωx+$\sqrt{3}$sinωx=2$\sqrt{3}$sin(ωx+$\frac{π}{3}$),
∵△ABC為正三角形,∴△ABC的高為2$\sqrt{3}$,BC=4,
∴周期T=8,∵T=$\frac{2π}{ω}$=8
∴ω=$\frac{π}{4}$.

點(diǎn)評(píng) 本題考查降冪公式和三角恒等變換公式,用數(shù)形結(jié)合的方法求未知量.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若S5=20,a7=4a3,則S10=( 。
A.110B.115C.120D.125

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=4+2ax-1的圖象恒過定點(diǎn)P,則點(diǎn)P的坐標(biāo)是(  )
A.(1,6)B.(1,5)C.(0,5)D.(5,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.設(shè)函數(shù)f(x)=ex+ax在(0,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為( 。
A.[-1,+∞)B.(-1,+∞)C.[0,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-ax,若f(1)=f(3),則a=4;f(x)≤0的解集為[-4,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在十張獎(jiǎng)券中,有一張一等獎(jiǎng),兩張二等獎(jiǎng),若從中抽取一張,則抽中一等獎(jiǎng)的概率為( 。
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-3≥0}\\{x-y-3≤0}\\{0≤y≤m}\\{\;}\end{array}\right.$,若z=2x+y的最大值為9,則實(shí)數(shù)m的值為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.甲,乙,丙三班各有20名學(xué)生,一次數(shù)學(xué)考試后,三個(gè)班學(xué)生的成績(jī)與人數(shù)統(tǒng)計(jì)如表;
甲班成績(jī)
分?jǐn)?shù)708090100
人數(shù)5555
乙班成績(jī)
分?jǐn)?shù)708090100
人數(shù)6446
丙班成績(jī)
分?jǐn)?shù)708090100
人數(shù)4664
s1,s2,s3表示甲,乙,丙三個(gè)班本次考試成績(jī)的標(biāo)準(zhǔn)差,則( 。
A.s2>s1>s3B.s2>s3>s1C.s1>s2>s3D.s3>s1>s2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.有兩個(gè)等差數(shù)列{an}和{bn},若$\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{_{1}+_{2}+…_{n}}$=$\frac{4n+6}{n+7}$(n∈N*),則$\frac{{a}_{3}+{a}_{6}+{a}_{9}+{a}_{14}}{_{3}+_{6}+_{7}+_{11}+_{13}}$的值為(  )
A.$\frac{152}{75}$B.$\frac{14}{9}$C.$\frac{12}{5}$D.$\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案