【題目】已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,0<φ< )圖象如圖,P是圖象的最高點,Q為圖象與x軸的交點,O為原點.且|OQ|=2,|OP|= ,|PQ|= .
(1)求函數(shù)y=f(x)的解析式;
(2)將函數(shù)y=f(x)圖象向右平移1個單位后得到函數(shù)y=g(x)的圖象,當x∈[0,2]時,求函數(shù)h(x)=f(x)g(x)的最大值.
【答案】
(1)解:由余弦定理得cos∠POQ= = ,
∴sin∠POQ= ,得P點坐標為( ,1),∴A=1, =4(2﹣ ),∴ω= .
由f( )=sin( +φ)=1 可得 φ= ,∴y=f(x) 的解析式為 f(x)=sin( x+ ).
(2)解:根據(jù)函數(shù)y=Asin(ωx+)的圖象變換規(guī)律求得 g(x)=sin x,…(7分)
h(x)=f(x)g(x)=sin( x+ ) sin x= + sin xcos x
= + sin = sin( ﹣ )+ .
當x∈[0,2]時, ∈[﹣ , ],
∴當 ,
即 x=1時,hmax(x)= .
【解析】(1)由余弦定理得cos∠POQ 的值,可得sin∠POQ,求出P的坐標可得A的值,再由函數(shù)的周期求出ω的值,再把點P的坐標代入函數(shù)解析式求出φ,即可求得 y=f(x) 的解析式.(2)求出g(x) 的解析式,化簡h(x)=f(x)g(x) 的解析式為 sin( ﹣ )+ ,再根據(jù)x的范圍求出h(x) 的值域,從而求得h(x) 的最大值.
【考點精析】本題主要考查了函數(shù)y=Asin(ωx+φ)的圖象變換和三角函數(shù)的最值的相關(guān)知識點,需要掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象;函數(shù),當時,取得最小值為;當時,取得最大值為,則,,才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù){an}滿a1=0,an+1=an+2n,那a2016的值是( )
A.2014×2015
B.2015×2016
C.2014×2016
D.2015×2015
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠用甲、乙兩種不同工藝生產(chǎn)一大批同一種零件,零件尺寸均在[21.7,22.3](單位:cm)之間,把零件尺寸在[21.9,22.1)的記為一等品,尺寸在[21.8,21.9)∪[22.1,22.2)的記為二等品,尺寸在[21.7,21.8)∪[22.2,22.3]的記為三等品,現(xiàn)從甲、乙工藝生產(chǎn)的零件中各隨機抽取100件產(chǎn)品,所得零件尺寸的頻率分布直方圖如圖所示.
P(K2≥k0) | 0.10 | 0.05 | 0.01 |
k0 | 2.706 | 3.841 | 6.635 |
附:
(1)根據(jù)上述數(shù)據(jù)完成下列2×2列聯(lián)表,根據(jù)此數(shù)據(jù),你認為選擇不同的工藝與生產(chǎn)出一等品是否有關(guān)?
甲工藝 | 乙工藝 | 總計 | |
一等品 | |||
非一等品 | |||
總計 |
(2)以上述各種產(chǎn)品的頻率作為各種產(chǎn)品發(fā)生的概率,若一等品、二等品、三等品的單件利潤分別為30元、20元、15元,你認為以后該工廠應(yīng)該選擇哪種工藝生產(chǎn)該種零件?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓過圓與直線的交點,且圓上任意一點關(guān)于直線的對稱點仍在圓上.
(1)求圓的標準方程;
(2)若圓與軸正半軸的交點為,直線與圓交于兩點,且點是的垂線(垂心是三角形三條高線的交點),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為,現(xiàn)有甲,乙二人從袋中輪流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到兩人中有一人取到白球即終止,每個球在每一次被取出的機會是等可能的.
(Ⅰ)求袋中原有白球的個數(shù):
(Ⅱ)求取球次數(shù)的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】把下列各命題作為原命題,分別寫出它們的逆命題、否命題和逆否命題.
(1)若α=β,則sin α=sin β;
(2)若對角線相等,則梯形為等腰梯形;
(3)已知a,b,c,d都是實數(shù),若a=b,c=d,則a+c=b+d.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知(2x-3y)9=a0x9+a1x8y+a2x7y2+…+a9y9,求:
(1)各項系數(shù)之和;
(2)所有奇數(shù)項系數(shù)之和;
(3)系數(shù)絕對值的和;
(4)分別求出奇數(shù)項的二項式系數(shù)之和與偶數(shù)項的二項式系數(shù)之和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)△ABC中,角A,B,C所對的邊分別為a,b,c.已知a=3,cos A=,B=A+.
(1)求b的值;
(2)求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com