1.在平面直角坐標系xOy中,已知角α的頂點和點O重合,始邊與x軸的非負半軸重合,終邊上一點M坐標為(-1,$\sqrt{3}$),則tan(α+$\frac{π}{4}$)=$\sqrt{3}-2$.

分析 根據(jù)三角函數(shù)的定義求解tanα的值,利用和與差公式即可求解tan(α+$\frac{π}{4}$)的值.

解答 解:由題意,根據(jù)三角函數(shù)的定義,tanα=$\frac{y}{x}$=$-\sqrt{3}$.
那么:tan(α+$\frac{π}{4}$)=$\frac{tanα+tan\frac{π}{4}}{1-tanαtan\frac{π}{4}}$=$\frac{-\sqrt{3}+1}{1+\sqrt{3}}$=$\sqrt{3}-2$
故答案為:$\sqrt{3}-2$.

點評 本題考查了三角函數(shù)的定義的運用和正切的和與差的公式的計算.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.已知數(shù)列{an}為等比數(shù)列,且a2013+a2015=$\int_0^2{\sqrt{4-{x^2}}}$dx,則a2014(a2012+2a2014+a2016)的值為( 。
A.π2B.2C.πD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.甲,乙兩臺機床同時生產(chǎn)一種零件,其質(zhì)量按測試指標劃分:指標大于或等于95為正品,小于95為次品,現(xiàn)隨機抽取這兩臺車床生產(chǎn)的零件各100件進行檢測,檢測結果統(tǒng)計如下:
測試指標[85,90)[90,95)[95,100)[100,105)[105,110)
機床甲81240328
機床乙71840296
(1)試分別估計甲機床、乙機床生產(chǎn)的零件為正品的概率;
(2)甲機床生產(chǎn)一件零件,若是正品可盈利160元,次品則虧損20元;乙機床生產(chǎn)一件零件,若是正品可盈利200元,次品則虧損40元,在(1)的前提下,現(xiàn)需生產(chǎn)這種零件2件,以獲得利潤的期望值為決策依據(jù),應該如何安排生產(chǎn)最佳?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設函數(shù)f(x)=|2x-1|+3x-4,記不等式f(x)<-3的解集為M.
(Ⅰ)求M;
(Ⅱ)當x∈M時,證明:x[f(x)]2-x2|f(x)|<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=|x+1|+|2x+a|,若f(x)的最小值為2.
(1)求實數(shù)a的值;
(2)若a>0,且m,n均為正實數(shù),且滿足m+n=a,求m2+n2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{3}$,聯(lián)接橢圓四個頂點的四邊形面積為2$\sqrt{6}$.
(1)求橢圓C的方程;
(2)A、B是橢圓的左右頂點,P(xP,yP)是橢圓上任意一點,橢圓在P點處的切線與過A、B且與x軸垂直的直線分別交于C、D兩點,直線AD、BC交于Q(xQ,yQ),是否存在實數(shù)λ,使xP=λxQ恒成立,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知拋物線E的頂點為原點O,焦點為圓F:x2+y2-4x+3=0的圓心F.經(jīng)過點F的直線l交拋物線E于A,D兩點,交圓F于B,C兩點,A,B在第一象限,C,D在第四象限.
(1)求拋物線E的方程;
(2)是否存在直線l,使2|BC|是|AB|與|CD|的等差中項?若存在,求直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設復數(shù)z滿足$\frac{{{{({1+i})}^2}}}{z}=1-i$,則z=( 。
A.1+iB.1-iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知定義在R上的奇函數(shù)f(x)滿足f(1)=e(e為自然對數(shù)的底數(shù)),且當x≥0時,有(x-1)f(x)<xf'(x),則不等式xf(x)-e|x|>0的解集是(  )
A.(-∞,-1)∪(1,+∞)B.(-1,0)∪(0,1)C.(-1,1)D.(-1,0)∪(1,+∞)

查看答案和解析>>

同步練習冊答案