13.設命題p:?x<0,x2≥1,則?p為(  )
A.?x≥0,x2<1B.?x<0,x2<1C.?x≥0,x2<1D.?x<0,x2<1

分析 根據(jù)含有量詞的命題的否定進行判斷即可.

解答 解:特稱命題的否定是全稱命題,
∴?p:?x∈R,都有x2<1.
故選:B.

點評 本題主要考查含有量詞的命題的否定,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.如圖所示,沿河有A、B兩城鎮(zhèn),它們相距20千米,以前,兩城鎮(zhèn)的污水直接排入河里,現(xiàn)為保護環(huán)境,污水需經處理才能排放,兩城鎮(zhèn)可以單獨建污水處理廠,或者聯(lián)合建污
水處理廠(在兩城鎮(zhèn)之間或其中一城鎮(zhèn)建廠,用管道將污水從各城鎮(zhèn)向污水處理廠輸送),依據(jù)經驗公式,建廠的費用為f(m)=25•m0.7(萬元),m表示污水流量,鋪設管道的費用(包括管道費)$g(x)=3.2\sqrt{x}$(萬元),x表示輸送污水管道的長度(千米);
已知城鎮(zhèn)A和城鎮(zhèn)B的污水流量分別為m1=3、m2=5,A、B兩城鎮(zhèn)連接污水處理廠的管道總長為20千米;假定:經管道運輸?shù)奈鬯髁坎话l(fā)生改變,污水經處理后直接排入河中;請解答下列問題(結果精確到0.1)
(1)若在城鎮(zhèn)A和城鎮(zhèn)B單獨建廠,共需多少總費用?
(2)考慮聯(lián)合建廠可能節(jié)約總投資,設城鎮(zhèn)A到擬建廠的距離為x千米,求聯(lián)合建廠的總費用y與x的函數(shù)關系
式,并求y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知△ABC中,三條邊a,b,c所對的角分別為A、B、C,且a2+b2-c2=ab
(Ⅰ)求角C的大。
(Ⅱ)若f(x)=$\sqrt{3}$sinxcosx+cos2x,求f(B)的最大值,并判斷此時△ABC$;\\;的$的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若點P(2,4)在函數(shù)f(x)=logax的圖象上,點Q(m,16)在f(x)的反函數(shù)圖象上,則m=16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.$\root{3}{2{7}^{2}}$-2${\;}^{lo{g}_{2}3}$×log2$\frac{1}{8}$+lg25+2lg2=20.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.對任意的實數(shù)x,若[x]表示不超過x的最大整數(shù),則“-1<x-y<1”是“[x]=[y]”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.數(shù)列{an}的通項公式為an=$\frac{1}{{n}^{2}+2n}$,其前n項和為Sn,則S10的值為( 。
A.1-$\frac{1}{12}$B.$\frac{1}{2}$(1-$\frac{1}{12}$)C.$\frac{1}{2}$($\frac{3}{2}$-$\frac{1}{12}$)D.$\frac{1}{2}$($\frac{3}{2}$-$\frac{1}{11}$-$\frac{1}{12}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)$f(x)=\sqrt{3}sinxcosx+{cos^2}x+\frac{3}{2}$.
(1)當$x∈[{-\frac{π}{6},\frac{π}{3}}]$時,求函數(shù)y=f(x)的值域;
(2)已知ω>0,函數(shù)$g(x)=f({\frac{ωx}{2}+\frac{π}{12}})$,若函數(shù)g(x)的最小正周期是π,求ω的值和函數(shù)g(x)的增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.計算:${(2\sqrt{2})^{\frac{2}{3}}}×{(0.1)^{-1}}-lg2-lg5$=19.

查看答案和解析>>

同步練習冊答案