【題目】已知?jiǎng)訄A與圓外切,與圓內(nèi)切.
(Ⅰ)試求動(dòng)圓圓心的軌跡的方程;
(Ⅱ)與圓相切的直線與軌跡交于兩點(diǎn),若直線的斜率成等比數(shù)列,試求直線的方程;
【答案】(1)(2)或.
【解析】【試題分析】(1)借助兩圓的位置關(guān)系與半徑之間的數(shù)量關(guān)系建立方程求解;(2)運(yùn)用直線與橢圓的位置關(guān)系建立方程組,通過坐標(biāo)之間的關(guān)系求解:
(Ⅰ)圓可化為,圓可化為,
設(shè)動(dòng)圓的半徑為,兩定圓的圓心分別為, ,則,
,∴,根據(jù)橢圓的定義可知,軌跡是以為焦點(diǎn)的橢圓,且, ,則,
故軌跡的方程為.
(Ⅱ)由題意知直線的斜率存在且不為.
設(shè)直線的方程為,
聯(lián)立
消去得,
設(shè), ,則
根據(jù)直線的斜率成等比數(shù)列,
可知,即,
∵,
∴,∴,∴,
由直線與圓相切可得,可得,
故所求直線方程為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校在一次第二課堂活動(dòng)中,特意設(shè)置了過關(guān)智力游戲,游戲共五關(guān).規(guī)定第一關(guān)沒過者沒獎(jiǎng)勵(lì),過 關(guān)者獎(jiǎng)勵(lì)件小獎(jiǎng)品(獎(jiǎng)品都一樣).下圖是小明在10次過關(guān)游戲中過關(guān)數(shù)的條形圖,以此頻率估計(jì)概率.
(Ⅰ)估計(jì)小明在1次游戲中所得獎(jiǎng)品數(shù)的期望值;
(Ⅱ)估計(jì)小明在3 次游戲中至少過兩關(guān)的平均次數(shù);
(Ⅲ)估計(jì)小明在3 次游戲中所得獎(jiǎng)品超過30件的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的方程是,雙曲線的左右焦點(diǎn)分別為的左右頂點(diǎn),而的左右頂點(diǎn)分別是的左右焦點(diǎn).
(1)求雙曲線的方程;
(2)若直線與雙曲線恒有兩個(gè)不同的交點(diǎn),且與的兩個(gè)交點(diǎn)A和B滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)是[0,1]上的不減函數(shù),即對(duì)于0≤x1≤x2≤1有f(x1)≤f(x2),且滿足(1)f(0)=0;(2)f( )= f(x);(3)f(1﹣x)=1﹣f(x),則f( )=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校100名學(xué)生其中考試語(yǔ)文成績(jī)的頻率分布直方圖所示,其中成績(jī)分組區(qū)間是:
.
(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分;
(3)若這100名學(xué)生語(yǔ)文某些分?jǐn)?shù)段的人數(shù)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示,
求數(shù)學(xué)成績(jī)?cè)?/span>之外的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班50名學(xué)生在一次百米測(cè)試中,成績(jī)?nèi)拷橛?3秒與18秒之間,將測(cè)試結(jié)果按如下方式分成五組:第一組,第二組,…,第五組,如圖是按上述分組方法得到的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估計(jì)這50名學(xué)生百米測(cè)試成績(jī)的中位數(shù)和平均值(精確到);
(2)若從第一、五組中隨機(jī)取出兩個(gè)成績(jī),列舉所有選取方法,并求這兩個(gè)成績(jī)的差的絕對(duì)值大于1的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)關(guān)于x的二次方程px2+(p﹣1)x+p+1=0有兩個(gè)不相等的正根,且一根大于另一根的兩倍,求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, 為橢圓: 的左、右焦點(diǎn),點(diǎn)在橢圓上,且面積的最大值為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線與橢圓交于, 兩點(diǎn), 的面積為1, (, ),當(dāng)點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),試問是否為定值?若是定值,求出這個(gè)定值;若不是定值,求出的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中的奇函數(shù)是( )
A.f(x)=x+1
B.f(x)=3x2﹣1
C.f(x)=2(x+1)3﹣1
D.f(x)═﹣
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com