5.“l(fā)og2a>log2b”是“${({\frac{1}{3}})^a}<{({\frac{1}{3}})^b}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 利用指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:∵${log_2}a>{log_2}b?a>b>0⇒{({\frac{1}{3}})^a}<{({\frac{1}{3}})^b}$.反之不成立,可能0>a>b.
故選:A.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合M={x|y=lg(x-2),N={x|x≥a},若集合M∩N=N,則實(shí)數(shù)a的取值范圍是( 。
A.(2,+∞)B.[2,+∞)C.(-∞,0)D.(-∞,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P(3,4)在雙曲線的漸近線上,若|$\overrightarrow{P{F}_{1}}$$+\overrightarrow{P{F}_{2}}$|=|$\overrightarrow{{F}_{1}{F}_{2}}$|,則此雙曲線的方程為( 。
A.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.命題“若x=1,則x2-3x+2=0”的逆否命題是( 。
A.若x≠1,則x2-3x+2≠0B.若x2-3x+2=0,則x=1
C.若x2-3x+2=0,則x≠1D.若x2-3x+2≠0,則x≠1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某條公共汽車線路收支差額y與乘客量x的函數(shù)關(guān)系如圖所示(收支差額=車票收入-支出費(fèi)用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議(Ⅰ)不改變車票價(jià)格,減少支出費(fèi)用;建議(Ⅱ)不改變支出費(fèi)用,提高車票價(jià)格,下面給出的四個(gè)圖形中,實(shí)線和虛線分別表示目前和建議后的函數(shù)關(guān)系,則( 。
A.①反映了建議(Ⅱ),③反映了建議(Ⅰ)B.①反映了建議(Ⅰ),③反映了建議(Ⅱ)
C.②反映了建議(Ⅰ),④反映了建議(Ⅱ)D.④反映了建議(Ⅰ),②反映了建議(Ⅱ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.8+2πB.8+3πC.10+2πD.10+3π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an}中,前n項(xiàng)和為Sn,且${S_n}=\frac{n+2}{3}{a_n}$,則$\frac{a_n}{{{a_{n-1}}}}$的最大值為( 。
A.-3B.-1C.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知i為虛數(shù)單位,則|3+2i|=( 。
A.$\sqrt{5}$B.$\sqrt{7}$C.$\sqrt{13}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.等比數(shù)列{an}的各項(xiàng)均為正數(shù),且$2{a_1}+3{a_2}=1,{a_3}^2=9{a_2}{a_6}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列$\left\{{-\frac{1}{b_n}}\right\}$的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案