分析 (1)運(yùn)用等比數(shù)列的性質(zhì),可得a2•a5=a1•a6,再由點(diǎn)滿足直線方程,可得a1+a6=11,解方程可得公比q,由等比數(shù)列的通項(xiàng)公式可得所求值;
(2)運(yùn)用等比數(shù)列的求和公式:Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$,計(jì)算即可得到所求值.
解答 解:(1)由等比數(shù)列的性質(zhì)可得a2•a5=a1•a6=$\frac{32}{9}$,
點(diǎn)M(a1,2-3a6)在直線y=3x-31上,可得
2-3a6=3a1-31,即為a1+a6=11,
解得a1=$\frac{1}{3}$,a6=$\frac{32}{3}$或a6=$\frac{1}{3}$,a1=$\frac{32}{3}$,
設(shè)公比q,即有q5=32或$\frac{1}{32}$,解得q=2或$\frac{1}{2}$,
則a8=a1q7=$\frac{1}{3}$•27=$\frac{128}{3}$;或a8=a1q7=$\frac{32}{3}$•($\frac{1}{2}$)7=$\frac{1}{12}$;
(2)Sn=21,即為
$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=$\frac{\frac{1}{3}(1-{2}^{n})}{1-2}$=21,解得n=6;
或$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=$\frac{\frac{32}{3}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=21,解得n=6.
綜上可得,n=6.
點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,注意運(yùn)用等比數(shù)列的性質(zhì),考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
語(yǔ)文成績(jī)分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) | [100,110) | [110,120] |
頻數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {i} | B. | {i,-i} | C. | {1,-1} | D. | {i,-i,1,-1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 18 | B. | 36 | C. | 135 | D. | 144 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 等腰三角形 | B. | ∠B=60°的三角形 | ||
C. | 等腰三角形或∠B=60°的三角形 | D. | 等腰直三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com