【題目】設(shè).
(1)求的單調(diào)區(qū)間;
(2)求在的最大值與最小值.
【答案】(1)見解析(2)x= -2時(shí),f (x)取最小值0,x= -5時(shí),f (x)取最大值63.
【解析】分析:(1)先求一階導(dǎo)函數(shù)的根,求解或的解集,寫出單調(diào)區(qū)間。
(2)根據(jù)(1)的結(jié)論列出函數(shù),的關(guān)系的表格判斷出極值,再計(jì)算f (-5),
f ()的值與極值做比較,得出最值。
詳解:(1)f ′(x)= -(x+2)(3x-2),
令f ′(x)>0得 -2<x<,令f ′(x)<0得x<-2或x>,
(-∞,-2) | -2 | (-2,) | (,+∞) | ||
— | 0 | + | 0 | — | |
極小值 | 極大值 |
∴的單調(diào)增區(qū)間為(-2,),單調(diào)減區(qū)間為(-∞,-2)和(,+∞);
(2)由單調(diào)性可知,當(dāng)x= -2時(shí),f (x)有極小值f (-2 )=0,當(dāng)x=時(shí),f (x)有極大值f ()=;
又f (-5)=63,f ()=,∴x= -2時(shí),f (x)取最小值0,x= -5時(shí),f (x)取最大值63.
分析:求函數(shù)在閉區(qū)間內(nèi)的最值問題的步驟:
(1)先求一階導(dǎo)函數(shù)的根,求解或的解集,判斷單調(diào)性。
(2)判斷極值并求出極值(可以列表,也可以畫出一階導(dǎo)函數(shù)的示意圖)。
(3)再計(jì)算f (a),f (b)的值與極值做比較,進(jìn)而得出結(jié)論。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)實(shí)數(shù)c>0,整數(shù)p>1,n∈N* .
(1)證明:當(dāng)x>﹣1且x≠0時(shí),(1+x)p>1+px;
(2)數(shù)列{an}滿足a1> ,an+1= an+ an1﹣p . 證明:an>an+1> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在空間中,過點(diǎn)A作平面π的垂線,垂足為B,記B=fπ(A).設(shè)α,β是兩個(gè)不同的平面,對空間任意一點(diǎn)P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2 , 則( )
A.平面α與平面β垂直
B.平面α與平面β所成的(銳)二面角為45°
C.平面α與平面β平行
D.平面α與平面β所成的(銳)二面角為60°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖四邊形ABCD為菱形,G為AC與BD交點(diǎn),,
(I)證明:平面平面;
(II)若, 三棱錐的體積為,求該三棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),圓:,過點(diǎn)的動(dòng)直線與圓交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).
求M的軌跡方程;
當(dāng)|OP|=|OM|時(shí),求的方程及的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司制定了一個(gè)激勵(lì)銷售人員的獎(jiǎng)勵(lì)方案:當(dāng)銷售利潤不超過10萬元時(shí),按銷售利潤的16%進(jìn)行獎(jiǎng)勵(lì);當(dāng)銷售利潤超過10萬元時(shí),若超出A萬元,則超出部分按2log5(A+1)進(jìn)行獎(jiǎng)勵(lì).記獎(jiǎng)金y(單位:萬元),銷售利潤x(單位:萬元)
(1)寫出該公司激勵(lì)銷售人員的獎(jiǎng)勵(lì)方案的函數(shù)模型;
(2)如果業(yè)務(wù)員老張獲得5.6萬元的獎(jiǎng)金,那么他的銷售利潤是多少萬元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為推行“新課堂”教學(xué)法, 某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式, 在甲、乙兩個(gè)平行班進(jìn)行教學(xué)實(shí)驗(yàn), 為了解教學(xué)效果, 期中考試后, 分別從兩個(gè)班級中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計(jì), 作出的莖葉圖如下圖, 記成績不低于70分者為“成績優(yōu)良”.
(1) 分別計(jì)算甲、乙兩班20個(gè)樣本中, 化學(xué)成績前十的平均分, 并據(jù)此判斷哪種教學(xué)方式的教學(xué)效果更佳;
甲班 | 乙班 | 總計(jì) | |
成績優(yōu)良 | |||
成績不優(yōu)良 | |||
總 計(jì) |
(2)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,是否有95%的把握認(rèn)為“成績優(yōu)良與教學(xué)方式關(guān)”?
0.05 | 0.010 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015秋隨州期末)甲命題:若隨機(jī)變量ξ~N(3,σ2),若P(ξ≤2)=0.3,則P(ξ≤4)=0.7.乙命題:隨機(jī)變量η﹣B(n,p),且Eη=300,Dη=200,則P=,則正確的是( )
A. 甲正確乙錯(cuò)誤 B. 甲錯(cuò)誤乙正確
C. 甲錯(cuò)誤乙也錯(cuò)誤 D. 甲正確乙也正確
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com