精英家教網 > 高中數學 > 題目詳情

【題目】5道題中有3道理科題和2道文科題.如果不放回地依次抽取2 道題,求:

(l)第1次抽到理科題的概率;

(2)第1次和第2次都抽到理科題的概率;

(3)在第 1 次抽到理科題的條件下,第2次抽到理科題的概率.

【答案】(1)(2)(3)

【解析】本題考查了有條件的概率的求法,做題時要認真分析,找到正確方法.(1)因為有5件是次品,第一次抽到理科試題,有3中可能,試題共有5件,(2)因為是不放回的從中依次抽取2件,所以第一次抽到理科題有5種可能,第二次抽到理科題有4種可能,第一次和第二次都抽到理科題有6種可能,總情況是先從5件中任抽一件,再從剩下的4件中任抽一件,所以有20種可能,再令兩者相除即可.

3)因為在第1次抽到理科題的條件下,第2次抽到文科題的概率為

1;……….5

2………5

3……….5

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知集合M={x|x<-3,或x>5},P={x|(xa)·(x-8)≤0}.

(1)求MP={x|5<x≤8}的充要條件;

(2)求實數a的一個值,使它成為MP={x|5<x≤8}的一個充分但不必要條件.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1= ,BC=4,點A1在底面ABC的投影是線段BC的中點O.

(1)證明在側棱AA1上存在一點E,使得OE⊥平面BB1C1C,并求出AE的長;
(2)求平面A1B1C與平面BB1C1C夾角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,已知
(1)求證:tanB=3tanA;
(2)若cosC= ,求A的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,建立平面直角坐標系xOy,x軸在地平面上,y軸垂直于地平面,單位長度為1千米.某炮位于坐標原點.已知炮彈發(fā)射后的軌跡在方程y=kx﹣ (1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關.炮的射程是指炮彈落地點的橫坐標.

(1)求炮的最大射程;
(2)設在第一象限有一飛行物(忽略其大。滹w行高度為3.2千米,試問它的橫坐標a不超過多少時,炮彈可以擊中它?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知各項均為正數的兩個數列{an}和{bn}滿足:an+1= ,n∈N* ,
(1)設bn+1=1+ ,n∈N*,求證:數列{ }是等差數列;
(2)設bn+1= ,n∈N*,且{an}是等比數列,求a1和b1的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據一組樣本數據(xi , yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為 =0.85x﹣85.71,則下列結論中不正確的是( )
A.y與x具有正的線性相關關系
B.回歸直線過樣本點的中心(
C.若該大學某女生身高增加1cm,則其體重約增加0.85kg
D.若該大學某女生身高為170cm,則可斷定其體重必為58.79kg

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,底面,,,分別為的中點,為側棱上的動點

(Ⅰ)求證:平面平面;

(Ⅱ)若為線段的中點,求證:平面

(Ⅲ)試判斷直線與平面是否能夠垂直。若能垂直,求的值;若不能垂直,請說明理由

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用年的隔熱層,每厘米厚的隔熱層建造成本為萬元.該建筑物每年的能源消耗費用(單位:萬元)與隔熱層厚度(單位:厘米)滿足關系:.若不建隔熱層,每年的能源消耗費用為萬元.為隔熱層建造費用與年的能源消耗費用之和.

1)求的值及的表達式;

2)隔熱層修建多厚時,總費用最小,并求其最小值.

查看答案和解析>>

同步練習冊答案