【題目】已知圓與直線相切.

(1)若直線與圓交于兩點,求

(2)設圓軸的負半軸的交點為,過點作兩條斜率分別為的直線交圓兩點,且,試證明直線恒過一定點,并求出該定點的坐標.

【答案】(1)(2)定點為

【解析】試題分析:1與直線相切,所以,所以圓,又圓心到直線的距離,根據(jù)勾股定理可得(2)易知,設,則直線,聯(lián)立得,由,將代替上面的,同理可得,

由點斜式寫出直線BC, 化簡得,所以直線恒過一定點,該定點為.

試題解析:

解:(1)由題意知,圓心到直線的距離,

所以圓.

又圓心到直線的距離,

所以.

(2)易知,設,則直線,

,得,

所以,即

所以.

,將代替上面的

同理可得,

所以

從而直線.

,

化簡得.

所以直線恒過一定點,該定點為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在幾何體中,底面為矩形, , .點在棱上,平面與棱交于點

(Ⅰ)求證: ;

(Ⅱ)求證:平面平面;

(Ⅲ)若, , ,平面平面,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨機抽取了40輛汽車在經(jīng)過路段上某點時的車速(km/h),現(xiàn)將其分成六段: , , , , ,后得到如圖所示的頻率分布直方圖.

(Ⅰ)現(xiàn)有某汽車途經(jīng)該點,則其速度低于80km/h的概率約是多少?

(Ⅱ)根據(jù)直方圖可知,抽取的40輛汽車經(jīng)過該點的平均速度約是多少?

(Ⅲ)在抽取的40輛且速度在(km/h)內(nèi)的汽車中任取2輛,求這2輛車車速都在(km/h)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設正項數(shù)列{an}的前n項和是Sn , 若{an}和{ }都是等差數(shù)列,且公差相等,則a1=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我市某機構為調(diào)查2017年下半年落實中學生“陽光體育”活動的情況,設平均每人每天參加體育鍛煉時間為(單位:分鐘),按鍛煉時間分下列四種情況統(tǒng)計:①0~10分鐘;②11~20分鐘;③21~30分鐘;④30分鐘以上,有10000名中學生參加了此項活動,圖1是此次調(diào)查中某一項的流程圖,其輸出的結(jié)果是6400,則平均每天參加體育鍛煉時間在0~20分鐘內(nèi)的學生的頻率是( )

1

A. 0.64 B. 0.36 C. 6400 D. 3600

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我市某機構為調(diào)查2017年下半年落實中學生“陽光體育”活動的情況,設平均每人每天參加體育鍛煉時間為(單位:分鐘),按鍛煉時間分下列四種情況統(tǒng)計:①0~10分鐘;②11~20分鐘;③21~30分鐘;④30分鐘以上,有10000名中學生參加了此項活動,圖1是此次調(diào)查中某一項的流程圖,其輸出的結(jié)果是6400,則平均每天參加體育鍛煉時間在0~20分鐘內(nèi)的學生的頻率是( )

1

A. 0.64 B. 0.36 C. 6400 D. 3600

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以坐標原點為極點, 軸的非負半軸為極軸建立極坐標系,已知曲線:,點的極坐標為,直線的極坐標方程為,且點在直線上.

(1)求曲線的極坐標方程和直線的直角坐標方程;

(2)設向左平移個單位長度后得到,的交點為, ,求的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4 坐標系與參數(shù)方程

在直角坐標系中,圓,曲線的參數(shù)方程為為參數(shù)),并以為極點, 軸正半軸為極軸建立極坐標系.

(1)寫出的極坐標方程,并將化為普通方程;

(2)若直線的極坐標方程為相交于兩點,

的面積(為圓的圓心).

查看答案和解析>>

同步練習冊答案