分析 由題意和正弦定理求出sinC的值,由內(nèi)角的范圍和特殊角的三角函數(shù)值求出C,由內(nèi)角和定理、勾股定理分別求出A和a的值.
解答 解:由題意和正弦定理得,$\frac{sinB}=\frac{c}{sinC}$,
則$sinC=\frac{c•sinB}=\frac{8×\frac{1}{2}}{4}=1$,
∵$\left.\begin{array}{l}{0°<C<180°}\end{array}\right.$,∴$C={90°}\\∴A={180°}-(B+C)={60°},a=\sqrt{{c^2}-{b^2}}=4\sqrt{3}\end{array}$,
∴A=180°-B-C=60°,
a=$\sqrt{{c}^{2}-^{2}}$=$\sqrt{64-16}$=$4\sqrt{3}$.
點評 本題考查正弦定理,內(nèi)角和定理、勾股定理,以及內(nèi)角的范圍,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
組序 | 高度區(qū)間 | 頻數(shù) | 頻率 |
1 | [230,235) | 14 | 0.14 |
2 | [235,240) | ① | 0.26 |
3 | [240,245) | ② | 0.20 |
4 | [245,250) | 30 | ③ |
5 | [250,255) | 10 | ④ |
合計 | 100 | 1.00 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{5π}{6}$ | C. | $\frac{7π}{6}$ | D. | $\frac{3π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | $\frac{11}{2}$ | C. | 1 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-∞,-\frac{1}{4}}]$ | B. | $[{-\frac{1}{4},1}]$ | C. | [1,+∞) | D. | $({-∞,-\frac{1}{4}}]及[{1,+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{4}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{16}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com