10.對于數(shù)列{an},“an+1<|an|(n=1,2,…)”是“{an}為遞減數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.必要條件D.既不充分也不必要條件

分析 若{an}為遞減數(shù)列,則an+1<an,而an+1<|an|不一定成立,反之也不成立.即可判斷出結(jié)論.

解答 解:若{an}為遞減數(shù)列,則an+1<an,而an+1<|an|不一定成立,反之也不成立.
∴“an+1<|an|(n=1,2,…)”是“{an}為遞減數(shù)列”的既不充分也不必要條件.
故選:D.

點評 本題考查了不等式的解法、數(shù)列的單調(diào)性、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線與直線x+2y-1=0垂直,則雙曲線的離心率等于( 。
A.$\sqrt{3}$B.$\sqrt{5}$C.3D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.記樣本x1,x2,…,xm的平均數(shù)為$\overline{x}$,樣本y1,y2,…,yn的平均數(shù)為$\overline{y}$($\overline{x}$≠$\overline{y}$),若樣本x1,x2,…,xm,y1,y2,…,yn的平均數(shù)為$\overline{z}$=$\frac{1}{4}$$\overline{x}$+$\frac{3}{4}$$\overline{y}$,則$\frac{m}{n}$的值為( 。
A.3B.4C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知i是虛數(shù)單位,a∈R,復(fù)數(shù)z1=3-ai,z2=1+2i,若z1•z2是純虛數(shù),則a=( 。
A.-$\frac{3}{2}$B.$\frac{3}{2}$C.-6D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知等差數(shù)列{an}的公差不為0,a1=1,且$\frac{1}{a_1},\;\frac{1}{a_2},\;\frac{1}{a_4}$成等比數(shù)列,設(shè){an}的前n項和為Sn,則Sn=( 。
A.$\frac{{{{(n+1)}^2}}}{4}$B.$\frac{n(n+3)}{4}$C.$\frac{n(n+1)}{2}$D.$\frac{{{n^2}+1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合M={x|x2+x-12≤0},N={y|y=3x,x≤1},則集合{x|x∈M且x∉N}為( 。
A.(0,3]B.[-4,3]C.[-4,0)D.[-4,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知非常數(shù)數(shù)列{an}滿足a1=1,an+12-3an+1an+2an2=0(n∈N*);數(shù)列{bn}滿足$\frac{1}{_{1}}$+$\frac{1}{_{2}}$+$\frac{1}{_{3}}$+…+$\frac{1}{_{n}}$=n2(n∈N*
(1)求數(shù)列{an}和{bn}的通項公式an,bn;
(2)令cn=$\frac{{a}_{n}}{_{n}}$,求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知O為坐標(biāo)原點,F(xiàn)為拋物線y2=4x的焦點,直線l:y=m(x-1)與拋物線交于A,B兩點,點A在第一象限,若|FA|=3|FB|.則m的值為(  )
A.3B.$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)y=$\frac{1}{2}$sin($\frac{2x}{3}$-$\frac{π}{4}$).
(1)這個函數(shù)的周期T=3π;
(2)當(dāng)x=x=$\frac{9π}{8}$+3kπ,k∈Z時,ymax=$\frac{1}{2}$;當(dāng)x=x=3kπ-$\frac{3π}{8}$,k∈Z時,ymin=-$\frac{1}{2}$.
(3)當(dāng)x=$\frac{3π}{2}$時,y=$\frac{\sqrt{2}}{4}$;當(dāng)x=$\frac{3π}{8}$時,y=0.

查看答案和解析>>

同步練習(xí)冊答案