若
2a+1<
3-2a,則實(shí)數(shù)a的取值范圍是( ).
A.(1,+∞) | B. |
C.(-∞,1) | D. |
試題分析:函數(shù)y=
x在R上為減函數(shù),∴2a+1>3-2a,∴a>
.故選B
點(diǎn)評(píng):利用指數(shù)函數(shù)的單調(diào)性解含指數(shù)的不等式是解決此類問題的關(guān)鍵,屬基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
為奇函數(shù),且在
處取得極大值2.
(Ⅰ)求
的解析式;
(Ⅱ)過點(diǎn)
(
可作函數(shù)
圖像的三條切線,求實(shí)數(shù)
的取值范圍;
(Ⅲ)若
對(duì)于任意的
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
f(
x)=3-2log
2x,
g(
x)=log
2x.
(1)如果
x∈[1,4],求函數(shù)
h(
x)=(
f(
x)+1)
g(
x)的值域;
(2)求函數(shù)
M(
x)=
的最大值;
(3)如果不等式
f(
x2)
f(
)>
kg(
x)對(duì)
x∈[2,4]有解,求實(shí)數(shù)
k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
.
(1)判斷函數(shù)
的奇偶性;
(2)判斷函數(shù)
在
上的單調(diào)性,并給出證明;
(3)當(dāng)
時(shí),函數(shù)
的值域是
,求實(shí)數(shù)
與
的值;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
(文科)若函數(shù)
的定義域和值域均為
,則
的范圍是____________。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
若
是函數(shù)
在點(diǎn)
附近的某個(gè)局部范圍內(nèi)的最大(。┲,則稱
是函數(shù)
的一個(gè)極值,
為極值點(diǎn).已知
,函數(shù)
.
(Ⅰ)若
,求函數(shù)
的極值點(diǎn);
(Ⅱ)若不等式
恒成立,求
的取值范圍.
(
為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
。
(1)
時(shí),求
的最小值;
(2)若
且
在
上是單調(diào)函數(shù),求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
函數(shù)
的單調(diào)遞減區(qū)間為______________
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分)已知函數(shù)
(Ⅰ)求
的單調(diào)區(qū)間;
(Ⅱ)如果當(dāng)
且
時(shí),
恒成立,求實(shí)數(shù)
的范圍.
查看答案和解析>>