如圖,直三棱柱中, ,中點,求直線與平面所成角的大小.(結(jié)果用反三角函數(shù)值表示)

.

解析試題分析:要求直線與平面所成的角,按照定義要作出直線在平面上的射影,直線與射影的夾角就是直線與平面所成的角,本題中平面的垂線比較難以找到,但題中有兩兩相互垂直,因此我們可以以他們?yōu)樽鴺溯S建立空間直角坐標系,用向量法求出直線與平面所成的角.這樣本題關(guān)鍵是求出平面的法向量,向量與向量的夾角與直線與平面所成的角互余.
試題解析:如圖建立空間直角坐標系,設(shè)平面的法向量,
直線與平面所成角為      +2分
       +4分  令,則  +6分
     +10分
直線與平面所成角大小為    +12分
考點:直線與平面所成的角.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在正方體中,分別為,中點。
(1)求異面直線所成角的大小;
(2)求證:平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐的底面邊長為8的正方形,四條側(cè)棱長均為.點分別是棱上共面的四點,平面平面,平面.
證明:
,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知四棱錐,底面為矩形,側(cè)棱,其中,為側(cè)棱上的兩個三等分點,如下圖所示.
(1)求證:;
(2)求異面直線所成角的余弦值;
(3)求二面角的余弦值.
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)(2011•湖北)如圖,已知正三棱柱ABC﹣A1B1C1的底面邊長為2,側(cè)棱長為3,點E在側(cè)棱AA1上,點F在側(cè)棱BB1上,且AE=2,BF=

(I) 求證:CF⊥C1E;
(II) 求二面角E﹣CF﹣C1的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知三棱柱的側(cè)棱與底面垂直,且
,,點、分別為、的中點.
(1)求證:平面
(2)求證:;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是邊長為2的正方形,平面,且.
(1)求證:平面;
(2)求證:平面平面;
(3)求多面體的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,側(cè)面PAD底面ABCD,側(cè)棱,底面ABCD為直角梯形,其中BC//AD,ABAD,AD=2,AB=BC=l,E為AD中點.
(1)求證:PE平面ABCD:
(2)求異面直線PB與CD所成角的余弦值:
(3)求平面PAB與平面PCD所成的二面角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,直三棱柱中, ,,的中點,△是等腰三角形,的中點,上一點.

(1)若∥平面,求;
(2)求直線和平面所成角的余弦值.

查看答案和解析>>

同步練習冊答案