17.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=2,S4=9,則a6=( 。
A.3B.4C.5D.6

分析 利用等差數(shù)列通項(xiàng)公式及前n項(xiàng)和公式列出方程組,求出首項(xiàng)和公差,由此能求出結(jié)果.

解答 解:∵等差數(shù)列{an}的前n項(xiàng)和為Sn,且a2=2,S4=9,
∴$\left\{\begin{array}{l}{{a}_{1}+d=2}\\{4{a}_{1}+\frac{4×3}{2}d=9}\end{array}\right.$,
解得${a}_{1}=\frac{3}{2},d=\frac{1}{2}$,
∴a6=$\frac{3}{2}+5×\frac{1}{2}$=4.
故選:B.

點(diǎn)評(píng) 本題考查等差數(shù)列的第6項(xiàng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2017屆重慶市高三10月月考數(shù)學(xué)(文)試卷(解析版) 題型:解答題

選修4-1:幾何證明選講

如圖所示,已知圓外有一點(diǎn),作圓的切線為切點(diǎn),過(guò)的中點(diǎn),作割線,交圓于、兩點(diǎn),連接并延長(zhǎng),交圓于點(diǎn),連接交圓于點(diǎn),若

(Ⅰ)求證:

(Ⅱ)求證:四邊形是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,在四邊形ABMN中,點(diǎn)O為AB的中點(diǎn),且OM=ON=MN=$\frac{1}{2}$AB=1,記∠BOM=θ(0<θ<$\frac{2π}{3}$).
(1)若tanθ=$\frac{3}{4}$,求sin∠BON的值;
(2)試求四邊形ABMN周長(zhǎng)的最大值及此時(shí)θ的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓E的中心為坐標(biāo)原點(diǎn),關(guān)于坐標(biāo)軸對(duì)稱,經(jīng)過(guò)點(diǎn)$M(1,\frac{{\sqrt{6}}}{2})$和$N(\sqrt{2},1)$.A、B為橢圓的左右頂點(diǎn),P、Q為橢圓E上異于A、B的兩點(diǎn),且直線BQ的斜率等于直線AP斜率的2倍.
(1)求橢圓E的方程;
(2)求證:直線PQ過(guò)定點(diǎn),并求定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知an=log(n+1)(n+2)(n∈N+),我們把使乘積a1•a2•a3…•an為整數(shù)的數(shù)n叫做“優(yōu)數(shù)”,則在區(qū)間(1,2004)內(nèi)的所有優(yōu)數(shù)的和為( 。
A.1024B.2003C.2026D.2048

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知直線l1:x+my+m-3=0與直線l2:(m-1)x+2y+8=0平行,則m的值為( 。
A.-1或2B.1或-2C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.四面體OABC四個(gè)頂點(diǎn)在空間直角坐標(biāo)系中的坐標(biāo)分別為:O(0,0,0)、A(2,0,0)、B(0,4,0)、C(0,2,2),則四面體OABC外接球的表面積為20π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知定點(diǎn)F1(-n,0),以PF1為直徑的動(dòng)圓M與定圓C:x2+y2=m2(m>n>0)內(nèi)切,則點(diǎn)P的軌跡方程為( 。
A.$\frac{{x}^{2}}{{m}^{2}}$$+\frac{{y}^{2}}{{n}^{2}}$=1B.$\frac{{x}^{2}}{{n}^{2}}$$+\frac{{y}^{2}}{{m}^{2}}$=1
C.$\frac{{x}^{2}}{{m}^{2}}$$+\frac{{y}^{2}}{{m}^{2}-{n}^{2}}$=1D.$\frac{{x}^{2}}{{m}^{2}-{n}^{2}}$$+\frac{{y}^{2}}{{n}^{2}}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{3}}{2}$,且過(guò)點(diǎn)($\sqrt{2}$,$\frac{\sqrt{2}}{2}$).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)橢圓C上不同的兩點(diǎn)M,N滿足$\overrightarrow{OM}$$•\overrightarrow{ON}$=0(其中O為坐標(biāo)原點(diǎn)),求證:$\frac{1}{|OM{|}^{2}}$$+\frac{1}{|ON{|}^{2}}$為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案