精英家教網 > 高中數學 > 題目詳情

【題目】將函數 的圖象向左平移 個周期后,所得圖象對應的函數g(x)的一個單調增區(qū)間為(
A.[0,π]
B.
C.
D.[﹣π,0]

【答案】B
【解析】解:∵函數 的最小正周期為 =π,故將函數 的圖象向左平移 個周期后, 所得圖象對應的函數g(x)=sin(2x+2 + )=cos2x,令2kπ﹣π≤2x≤2kπ,求得kπ﹣ ≤x≤kπ,
可得函數g(x)的單調增區(qū)間為[kπ﹣ ,kπ],k∈Z.
令k=0,可得g(x)的一個單調增區(qū)間為[﹣ ,0],
故選:B.
【考點精析】掌握函數y=Asin(ωx+φ)的圖象變換是解答本題的根本,需要知道圖象上所有點向左(右)平移個單位長度,得到函數的圖象;再將函數的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數的圖象;再將函數的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數的圖象.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數=lnx+ax2+(2a+1)x

(1)討論的單調性;

(2)當a﹤0時,證明

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若y=|3sin(ωx+ )+2|的圖象向右平移 個單位后與自身重合,且y=tanωx的一個對稱中心為( ,0),則ω的最小正值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著資本市場的強勢進入,互聯網共享單車“忽如一夜春風來”,遍布了各個城市的大街小巷.為了解共享單車在市的使用情況,某調研機構在該市隨機抽取了位市民進行調查,得到的列聯表(單位:人)

(1)根據以上數據,能否在犯錯誤的概率不超過的前提下認為使用共享單車的情況與年齡有關?(結果保留3位小數)

(2)現從所抽取的歲以上的市民中利用分層抽樣的方法再抽取5人

(i)分別求這5人中經常使用、偶爾或不用共享單車的人數;

(ii)從這5人中,再隨機抽取2人贈送一件禮物,求選出的2人中至少有1人經常使用共享單車的概率.

參考公式及數據:,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx﹣ ,g(x)= ﹣1. (Ⅰ)若a>0,試判斷f(x)在定義域內的單調性;
(Ⅱ)若f(x)在[1,e]上的最小值為 ,求a的值;
(Ⅲ)當a=0時,若x≥1時,恒有xf(x)≤λ[g(x)+x]成立,求λ的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某汽車美容公司為吸引顧客,推出優(yōu)惠活動:對首次消費的顧客,按200元/次收費,并注冊成為會員,對會員逐次消費給予相應優(yōu)惠,標準如表:

消費次第

第1次

第2次

第3次

第4次

≥5次

收費比例

1

0.95

0.90

0.85

0.80

該公司從注冊的會員中,隨機抽取了100位進行統(tǒng)計,得到統(tǒng)計數據如表:

消費次第

第1次

第2次

第3次

第4次

第5次

頻數

60

20

10

5

5

假設汽車美容一次,公司成本為150元,根據所給數據,解答下列問題:
(1)估計該公司一位會員至少消費兩次的概率;
(2)某會員僅消費兩次,求這兩次消費中,公司獲得的平均利潤;
(3)設該公司從至少消費兩次,求這的顧客消費次數用分層抽樣方法抽出8人,再從這8人中抽出2人發(fā)放紀念品,求抽出2人中恰有1人消費兩次的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓過點,且離心率

(1)求橢圓的標準方程

(2)是否存在過點的直線交橢圓與不同的兩點,且滿足 (其中為坐標原點)。若存在,求出直線的方程;若不存在,請說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校有高一、高二、高三三個年級,已知高一、高二、高三的學生數之比為2:3;5,現從該學校中抽取一個容量為100的樣本,從高一學生中用簡單隨機抽樣抽取樣本時,學生甲被抽到的概率為 ,則該學校學生的總數為(
A.200
B.400
C.500
D.1000

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某手機賣場對市民進行國產手機認可度的調查,隨機抽取100名市民,按年齡(單位:歲)進行統(tǒng)計的頻數分布表和頻率分布直方圖如下:

分組(歲)

頻數

[25,30)

x

[30,35)

y

[35,40)

35

[40,45)

30

[45,50]

10

合計

100

(Ⅰ)求頻率分布表中x、y的值,并補全頻率分布直方圖;
(Ⅱ)在抽取的這100名市民中,按年齡進行分層抽樣,抽取20人參加國產手機用戶體驗問卷調查,現從這20人重隨機抽取2人各贈送精美禮品一份,設這2名市民中年齡在[35,40)內的人數為X,求X的分布列及數學期望.

查看答案和解析>>

同步練習冊答案