如圖,在正方體ABCD-A1B1C1D1中,E、F分別是BB1、CC1的中點(diǎn),求異面直線AE和BF所成角的余弦值.
考點(diǎn):異面直線及其所成的角
專題:
分析:利用異面直線所成角的定義,將直線BF平移到EC1,則∠AEC1為異面直線AE和BF所成角,在△AEC1中,求出三邊長(zhǎng),利用余弦定理能求出結(jié)果.
解答: 解:連結(jié)EC1,則EC1∥BF,
∴∠AEC1為異面直線AE和BF所成角(或所成角的補(bǔ)角),
設(shè)正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,
在△AEC1中,AE=EC1=
5
2
a,AC1=
3
a
,
∴cos∠AEC1=
2×(
5
2
a)2-(
3
a)2
5
2
5
2
a
=-
1
5

∴異面直線AE和BF所成角的余弦值為
1
5
點(diǎn)評(píng):本題考查異面直線所成角的余弦值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x-1>0},B={x||x-1|≤2},則A∩B=(  )
A、{x|x≥1}
B、{x|-1≤x≤3}
C、{x|x≤3}
D、{x|1<x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=
2x2-ax+1
x
在(0,+∞)上有極值時(shí),求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是正四面體的平面展開圖,M、N、G分別為DE、BE、FE的中點(diǎn),則在這個(gè)正四面體中,MN與CG所成角的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E是棱AB上一點(diǎn)
(Ⅰ) 當(dāng)點(diǎn)E在AB上移動(dòng)時(shí),三棱錐D-D1CE的體積是否變化?若變化,說(shuō)明理由;若不變,求這個(gè)三棱錐的體積;
(Ⅱ) 當(dāng)點(diǎn)E在AB上移動(dòng)時(shí),是否始終有D1E⊥A1D,證明你的結(jié)論;
(Ⅲ)若E是AB的中點(diǎn),求二面角D1-EC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱柱ABCD-A1B1C1D1的底面ABCD是邊長(zhǎng)為2
3
的正方形,平面ACC1⊥ABCD,BC1=CC1,直線DB與平面BCC1B1成30°角,
(1)求證:平面BC1D⊥平面ABCD;
(2)求四棱柱ABCD-A1B1C1D1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)0≤x≤a,求函數(shù)f(x)=3x4-8x3-6x2+24x的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以橢圓
x2
4
+
y2
3
=1的左焦點(diǎn)為焦點(diǎn),以坐標(biāo)原點(diǎn)為頂點(diǎn)的拋物線方程為(  )
A、y2=-4x
B、y2=-2x
C、y2=-8x
D、y=-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,a1=2,an+1=2+
n
an
(n∈N*),求證:an<1+
n+1

查看答案和解析>>

同步練習(xí)冊(cè)答案