【題目】已知橢圓,點(diǎn)在橢圓橢圓的四個(gè)頂點(diǎn)的連線構(gòu)成的四邊形的面積為

1)求橢圓的方程;

2)設(shè)點(diǎn)為橢圓長(zhǎng)軸的左端點(diǎn) 為橢圓上異于橢圓長(zhǎng)軸端點(diǎn)的兩點(diǎn),記直線斜率分別為、,,請(qǐng)判斷直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求該定點(diǎn)坐標(biāo),若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由

【答案】(1);(2

【解析】【試題分析】1)將的坐標(biāo)代入橢圓方程得到一個(gè)方程,利用四邊形的面積可得到另一個(gè)方程,結(jié)合,聯(lián)立方程組可解得的值.2設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,寫(xiě)出判別式和韋達(dá)定理,代入,化簡(jiǎn)后可求得定點(diǎn)坐標(biāo).

【試題解析】

1)由點(diǎn)在橢圓上可得 整理為 ,

由橢圓的四個(gè)頂點(diǎn)的連接線構(gòu)成的四邊形的面積為可得 ,

可得,可解得 故橢圓的方程為

2)設(shè)點(diǎn)的坐標(biāo)分別為,點(diǎn)的坐標(biāo)為,

可得,

設(shè)直線的方程為(直線的斜率存在),

可得,

整理為 ,

聯(lián)立,消去

,,

, ,

故有 ,

整理得 解得 ,

當(dāng)時(shí)直線的方程為,過(guò)定點(diǎn)不合題意

當(dāng)時(shí)直線的方程為,過(guò)定點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程x2﹣2alnx﹣2ax=0有唯一解,則實(shí)數(shù)a的值為( )
A.1
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某程序框圖如圖所示,若輸出i的值為63,則判斷框內(nèi)可填入的條件是(

A.S>27
B.S≤27
C.S≥26
D.S<26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐中,.

(1)證明:面;

(2)求點(diǎn)到平面的距離;

(3)求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分12分)

圍建一個(gè)面積為360m2的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對(duì)面的新墻上要留一個(gè)寬度為2m的進(jìn)出口,如圖所示,已知舊墻的維修費(fèi)用為45/m,新墻的造價(jià)為180/m,設(shè)利用的舊墻的長(zhǎng)度為x(單位:元)。

)將y表示為x的函數(shù);

)試確定x,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線,半徑為2的圓相切,圓心軸上且在直線的上方.

1)求圓的方程;

2)過(guò)點(diǎn)的直線與圓交于兩點(diǎn)軸上方),問(wèn)在軸正半軸上是否存在定點(diǎn),使得軸平分?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線y2=4x的焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),分別過(guò)A、B兩點(diǎn)作準(zhǔn)線的垂線,垂足分別為A′、B′兩點(diǎn),以線段A′B′為直徑的圓C過(guò)點(diǎn)(﹣2,3),則圓C的方程為(
A.(x+1)2+(y﹣2)2=2
B.(x+1)2+(y﹣1)2=5
C.(x+1)2+(y+1)2=17
D.(x+1)2+(y+2)2=26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是定義域?yàn)?/span>R的奇函數(shù).

k值;

,試判斷函數(shù)單調(diào)性并求使不等式恒成立的t的取值范圍;

,且上的最小值為,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓+=1的焦點(diǎn)分別是、, 是橢圓上一點(diǎn),若連結(jié)、、三點(diǎn)恰好能構(gòu)成直角三角形,則點(diǎn)軸的距離是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案