【題目】設(shè)函數(shù)是定義域為R的奇函數(shù).

k值;

,試判斷函數(shù)單調(diào)性并求使不等式恒成立的t的取值范圍;

,且上的最小值為,求m的值.

【答案】12;(2;(32

【解析】

試題分析:(1)根據(jù)奇函數(shù)的性質(zhì)可得f0=0,由此求得k值;(2)由a0a≠1),f1)<0,求得1a0,fx)在R上單調(diào)遞減,不等式化為,即恒成立,由0求得t的取值范圍;(3)由求得a的值,可得 gx)的解析式,令,可知為增函數(shù),t≥f1),令,分類討論求出ht)的最小值,再由最小值等于2,求得m的值

試題解析:(1∵fx)是定義域為R的奇函數(shù),∴f0)=0∴1-(k1)=0,

∴k2

2

單調(diào)遞減,單調(diào)遞增,故fx)在R上單調(diào)遞減。

不等式化為

,

解得

3

由(1)可知為增函數(shù),

ht)=t22mt2=(tm22m2t≥

m≥,當(dāng)tm時,htmin2m2=-2,∴m2

m<,當(dāng)t時,htmin3m=-2,解得m>,舍去

綜上可知m2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某市有一條東西走向的公路,現(xiàn)欲經(jīng)過公路上的處鋪設(shè)一條南北走向的公路.在施工過程中發(fā)現(xiàn)在處的正北1百米的處有一漢代古跡.為了保護(hù)古跡,該市決定以為圓心, 1百米為半徑設(shè)立一個圓形保護(hù)區(qū).為了連通公路,欲再新建一條公路,點 分別在公路上,且求與圓相切.

(1)當(dāng)處2百米時,求的長;

(2)當(dāng)公路長最短時,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,在橢圓,橢圓的四個頂點的連線構(gòu)成的四邊形的面積為

1)求橢圓的方程

2)設(shè)點為橢圓長軸的左端點, 為橢圓上異于橢圓長軸端點的兩點記直線斜率分別為、,請判斷直線是否過定點?若過定點,求該定點坐標(biāo),若不過定點,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù) 的最小正周期;

(2)若 ,且 ,求 的值.

【答案】(1) (2)

【解析】試題分析:(1)根據(jù)二倍角公式和兩角和差公式得到,進(jìn)而得到周期;(2)由,得到 ,由配湊角公式得到,代入值得到函數(shù)值.

解析:

(1)由題意

=

所以 的最小正周期為 ;

(2)由

又由 ,所以

型】解答
結(jié)束】
20

【題目】為響應(yīng)十九大報告提出的實施鄉(xiāng)村振興戰(zhàn)略,某村莊投資 萬元建起了一座綠色農(nóng)產(chǎn)品加工廠.經(jīng)營中,第一年支出 萬元,以后每年的支出比上一年增加了 萬元,從第一年起每年農(nóng)場品銷售收入為 萬元(前 年的純利潤綜合=前 年的 總收入-前 年的總支出-投資額 萬元).

(1)該廠從第幾年開始盈利?

(2)該廠第幾年年平均純利潤達(dá)到最大?并求出年平均純利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的左、右焦點分別為 , ,其離心率為 ,短軸端點與焦點構(gòu)成四邊形的面積為 .

(1)求橢圓 的方程;

(2)若過點 的直線 與橢圓 交于不同的兩點 、 , 為坐標(biāo)原點,當(dāng) 時,試求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓上的點到它的兩個焦的距離之和為,以橢圓的短軸為直徑的圓經(jīng)過這兩個焦點,點 分別是橢圓的左、右頂點.

)求圓和橢圓的方程.

)已知, 分別是橢圓和圓上的動點(, 位于軸兩側(cè)),且直線軸平行,直線, 分別與軸交于點, .求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知圓O1與圓O2相交于A,B兩點,過點A作圓O1的切線交圓O2于點C,過點B作兩圓的割線,分別交圓O1 , 圓O2于點D,E,DE與AC相交于點P.

(1)求證:AD∥EC;
(2)若AD是圓O2的切線,且PA=3,PC=1,AD=6,求DB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】解答
(1)在公比為2的等比數(shù)列{an}中,a2與a5的等差中項是9 .求a1的值;
(2)若函數(shù)y=a1sin( φ),0<φ<π的一部分圖象如圖所示,M(﹣1,a1),N(3,﹣a1)為圖象上的兩點,設(shè)∠MON=θ,其中O為坐標(biāo)原點,0<θ<π,求cos(θ﹣φ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在斜三棱柱ABC﹣A1B1C1中,側(cè)面ACC1A1與側(cè)面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.

(1)求證:AB1⊥CC1
(2)若 ,求二面角C﹣AB1﹣A1的正弦值.

查看答案和解析>>

同步練習(xí)冊答案