【題目】已知關(guān)于x的方程x2﹣2alnx﹣2ax=0有唯一解,則實(shí)數(shù)a的值為( )
A.1
B.
C.
D.

【答案】B
【解析】解:由選項(xiàng)知a>0,
設(shè)g(x)=x2﹣2alnx﹣2ax,(x>0),
若方程x2﹣2alnx﹣2ax=0有唯一解,
即g(x)=0有唯一解,
則g′(x)=2x﹣ ﹣2a= ,
令g′(x)=0,可得x2﹣ax﹣a=0,
∵a>0,x>0,∴x1= (另一根舍去),
當(dāng)x∈(0,x1)時(shí),g′(x)<0,g(x)在(0,x1)上是單調(diào)遞減函數(shù);
當(dāng)x∈(x1 , +∞)時(shí),g′(x)>0,g(x)在(x1 , +∞)上是單調(diào)遞增函數(shù),
∴當(dāng)x=x2時(shí),g′(x1)=0,g(x)min=g(x1),
∵g(x)=0有唯一解,
∴g(x1)=0,
,
,
∴2alnx1+ax1﹣a=0
∵a>0,
∴2lnx1+x1﹣1=0,
設(shè)函數(shù)h(x)=2lnx+x﹣1,
∵x>0時(shí),h(x)是增函數(shù),
∴h(x)=0至多有一解,
∵h(yuǎn)(1)=0,
∴方程2lnx1+x1﹣1=0的解為x1=1,
即x1= =1,
,
∴當(dāng)a>0,方程f(x)=2ax有唯一解時(shí)a的值為
故選:B.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的極值與導(dǎo)數(shù)(求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值),還要掌握函數(shù)的最大(小)值與導(dǎo)數(shù)(求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值比較,其中最大的是一個(gè)最大值,最小的是最小值)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C:ρsin2θ=2acosθ(a>0),直線l的參數(shù)方程為 (t為參數(shù)),l與C分別交于M,N,P(﹣2,﹣4).
(1)寫出C的平面直角坐標(biāo)系方程和l的普通方程;
(2)已知|PM|,|MN|,|PN|成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),我國(guó)許多省市霧霾天氣頻發(fā),為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),某市面向全市征召n名義務(wù)宣傳志愿者,成立環(huán)境保護(hù)宣傳組織現(xiàn)把該組織的成員按年齡分成5組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示,已知第2組有70人.

(1)求該組織的人數(shù).

(2)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加某社區(qū)的宣傳活動(dòng),然后在這6名志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第3組至少有一名志愿者被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓的一個(gè)頂點(diǎn)坐標(biāo)為(2,0),離心率為

(1)求橢圓的方程;
(2)若A(0,1),設(shè)M,N是橢圓上異于點(diǎn)A的任意兩點(diǎn),且AM⊥AN,線段MN的中垂線l與x軸的交點(diǎn)為(m,0),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校自主招生一次面試成績(jī)的莖葉圖和頻率分布直方圖均受到了不同程度的損壞,其可見(jiàn)部分信息如下,據(jù)此解答下列問(wèn)題:

1)求參加此次高校自主招生面試的總?cè)藬?shù),面試成績(jī)的中位數(shù)及分?jǐn)?shù)在內(nèi)的人數(shù);

2)若從面試成績(jī)?cè)?/span>內(nèi)的學(xué)生中任選兩人進(jìn)行隨機(jī)復(fù)查求恰好有一人分?jǐn)?shù)在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市有A、B兩家羽毛球球俱樂(lè)部,兩家設(shè)備和服務(wù)都很好,但收費(fèi)方式不同,A俱樂(lè)部每塊場(chǎng)地每小時(shí)收費(fèi)6元;B俱樂(lè)部按月計(jì)費(fèi),一個(gè)月中20小時(shí)以內(nèi)20小時(shí)每塊場(chǎng)地收費(fèi)90元,超過(guò)20小時(shí)的部分,每塊場(chǎng)地每小時(shí)2元,某企業(yè)準(zhǔn)備下個(gè)月從這兩家俱樂(lè)部中的一家租用一塊場(chǎng)地開(kāi)展活動(dòng),其活動(dòng)時(shí)間不少于12小時(shí),也不超過(guò)30小時(shí).

設(shè)在A俱樂(lè)部租一塊場(chǎng)地開(kāi)展活動(dòng)x小時(shí)的收費(fèi)為,在B俱樂(lè)部租一塊場(chǎng)地開(kāi)展活動(dòng)x小時(shí)的收費(fèi)為,試求的解析式;

問(wèn)該企業(yè)選擇哪家俱樂(lè)部比較合算,為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某重點(diǎn)中學(xué)將全部高一學(xué)生分成兩個(gè)成績(jī)相當(dāng)(成績(jī)的均值、方差都相同)的級(jí)部, 級(jí)部采用傳統(tǒng)形式的教學(xué)方式, 級(jí)部采用新型的基于信息化的自主學(xué)習(xí)教學(xué)方式.為了解教學(xué)效果,期末考試后分別從兩個(gè)級(jí)部中各隨機(jī)抽取30名學(xué)生的數(shù)學(xué)成績(jī)進(jìn)行統(tǒng)計(jì),做出莖葉圖如下,記成績(jī)不低于127分者為“優(yōu)秀”.

1級(jí)部樣本的30個(gè)個(gè)體中隨機(jī)抽取1個(gè),求抽出的為“優(yōu)秀”的概率;

2由以上數(shù)據(jù)填寫下面列聯(lián)表,并判斷是否有的把握認(rèn)為“優(yōu)秀”與教學(xué)方式有關(guān).

附表

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某市有一條東西走向的公路,現(xiàn)欲經(jīng)過(guò)公路上的處鋪設(shè)一條南北走向的公路.在施工過(guò)程中發(fā)現(xiàn)在處的正北1百米的處有一漢代古跡.為了保護(hù)古跡,該市決定以為圓心, 1百米為半徑設(shè)立一個(gè)圓形保護(hù)區(qū).為了連通公路,欲再新建一條公路,點(diǎn) 分別在公路上,且求與圓相切.

(1)當(dāng)處2百米時(shí),求的長(zhǎng);

(2)當(dāng)公路長(zhǎng)最短時(shí),求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,點(diǎn)在橢圓,橢圓的四個(gè)頂點(diǎn)的連線構(gòu)成的四邊形的面積為

1)求橢圓的方程;

2)設(shè)點(diǎn)為橢圓長(zhǎng)軸的左端點(diǎn), 為橢圓上異于橢圓長(zhǎng)軸端點(diǎn)的兩點(diǎn)記直線斜率分別為、,,請(qǐng)判斷直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn)求該定點(diǎn)坐標(biāo),若不過(guò)定點(diǎn)請(qǐng)說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案