【題目】為了了解初三學(xué)生女生身高情況,某中學(xué)對初三女生身高進(jìn)行了一次測量,所得數(shù)據(jù)整理后列出了頻率分布表如下:
組 別 | 頻數(shù) | 頻率 |
145.5~149.5 | 1 | 0.02 |
149.5~153.5 | 4 | 0.08 |
153.5~157.5 | 20 | 0.40 |
157.5~161.5 | 15 | 0.30 |
161.5~165.5 | 8 | 0.16 |
165.5~169.5 | m | n |
合 計 | M | N |
(1)求出表中所表示的數(shù)分別是多少?
(2)畫出頻率分布直方圖.
(3)全體女生中身高在哪組范圍內(nèi)的人數(shù)最多?由直方圖確定此組數(shù)據(jù)中位數(shù)是多少?
【答案】(1)0.04,(2)略(3) 在153.5 ~157.5范圍內(nèi)最多
【解析】試題分析:(1)利用頻數(shù)比頻率等于樣本個體數(shù)可得出M,從而得出m;頻率之和等于1可得N及n
(3)頻率分布表中頻數(shù)越大的,落在該組的樣本數(shù)就越多,數(shù)據(jù)兩邊的個體數(shù)相同(或者說兩邊的樣本概率相等),那么這個數(shù)就是樣本的中位數(shù)。
試題解析:(1)
(2)略
(3)由第(1)問及表格數(shù)據(jù)知,在范圍內(nèi)最多(另也可通過頻率分布直方圖看出)。 中 位數(shù)兩邊的樣本數(shù)量相同,即兩邊的樣本概率相等。因157.5兩邊的樣本概率均為0.5,所以中位數(shù)為157.5。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,求函數(shù)的圖象在處的切線方程;
(2)若,試討論方程的實(shí)數(shù)解的個數(shù);
(3)當(dāng)時,若對于任意的,都存在,使得,求滿足條件的正整數(shù)的取值的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓短軸的左右兩個端點(diǎn)分別為A,B,直線與x軸、y軸分別交于兩點(diǎn)E,F(xiàn),交橢圓于兩點(diǎn)C,D.
(1)若,求直線的方程;
(2)設(shè)直線AD,CB的斜率分別為,若,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有外形相同的球分裝三個盒子,每盒10個.其中,第一個盒子中7個球標(biāo)有字母A、3個球標(biāo)有字母B;第二個盒子中有紅球和白球各5個;第三個盒子中則有紅球8個,白球2個.試驗(yàn)按如下規(guī)則進(jìn)行:先在第一號盒子中任取一球,若取得標(biāo)有字母A的球,則在第二號盒子中任取一個球;若第一次取得標(biāo)有字母B的球,則在第三號盒子中任取一個球.如果第二次取出的是紅球,則稱試驗(yàn)成功,那么試驗(yàn)成功的概率為( )
A.0.59 B.0.54 C.0.8 D.0.15
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足:對于任意且時,,.
(1)若,求證:為等比數(shù)列;
(2)若.
① 求數(shù)列的通項(xiàng)公式;
② 是否存在,使得為數(shù)列中的項(xiàng)?若存在,求出所有滿足條件的的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)微信同程旅游的調(diào)查統(tǒng)計顯示,參與網(wǎng)上購票的1000位購票者的年齡(單位:歲)情況如圖所示.
(1)已知中間三個年齡段的網(wǎng)上購票人數(shù)成等差數(shù)列,求的值;
(2)為鼓勵大家網(wǎng)上購票,該平臺常采用購票就發(fā)放酒店入住代金券的方法進(jìn)行促銷,具體做法如下:
年齡在歲的每人發(fā)放20元,其余年齡段的每人發(fā)放50元,先按發(fā)放代金券的金額采用分層抽樣的方式從參與調(diào)查的1000位網(wǎng)上購票者中抽取5人,并在這5人中隨機(jī)抽取3人進(jìn)行回訪調(diào)查,求此3人獲得代金券的金額總和為90元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,以Ox軸為始邊作兩個銳角α,β,它們的終邊分別與單位圓相交于A,B兩點(diǎn),已知A,B的橫坐標(biāo)分別為,.求:
(1)tan(α+β)的值;
(2)α+2β的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)滿足f(x+y)=f(x)+f(y),當(dāng)x>0時,有,且f(1)=﹣2
(1)求f(0)及f(﹣1)的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并利用定義加以證明;
(3)求解不等式f(2x)﹣f(x2+3x)<4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,DA⊥平面ABE,AE=EB=BC=2,
BF⊥平面ACE,且點(diǎn)F在CE上.
(1)求證:AE⊥BE;
(2)求三棱錐D—AEC的體積;
(3)設(shè)點(diǎn)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,
使得MN∥平面DAE.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com