20.已知雙曲線M的焦點F1,F(xiàn)2在x軸上,直線$\sqrt{7}x+3y=0$是雙曲線M的一條漸近線,點P在雙曲線M上,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,如果拋物線y2=16x的準線經(jīng)過雙曲線M的一個焦點,那么$|\overrightarrow{P{F_1}}|•|\overrightarrow{P{F_2}}|$=( 。
A.21B.14C.7D.0

分析 求得拋物線的焦點,可得c=4,即a2+b2=16,由漸近線方程可得$\frac{a}$=$\frac{\sqrt{7}}{3}$,解得a,b,運用雙曲線的定義和直角三角形的勾股定理,化簡整理,即可得到所求值.

解答 解:拋物線y2=16x的準線為x=-4,
由題意可得雙曲線M的一個焦點為(-4,0),
設(shè)雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0),
可得c=4,即a2+b2=16,
直線$\sqrt{7}x+3y=0$是雙曲線M的一條漸近線,
可得$\frac{a}$=$\frac{\sqrt{7}}{3}$,
解得a=3,b=$\sqrt{7}$,
可設(shè)P為右支上一點,由雙曲線的定義可得
|PF1|-|PF2|=2a=6,①
由勾股定理可得,|PF1|2+|PF2|2=|F1F2|2=4c2=64,②
②-①2,可得|PF1|•|PF2|=14.
故選:B.

點評 本題考查雙曲線的定義、方程和性質(zhì),考查勾股定理和拋物線的方程和性質(zhì)的運用,以及運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

18.在等比數(shù)列{an}中,a1+a6=33,a3•a4=32,且an+1<an(n∈N*
(1)求數(shù)列{an}的通項公式;
(2)若Tn=lga1+lga2+…+lgan,求Tn的最大值及此時n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知定義在(0,+∞)上的函數(shù)$f(x)=\left\{\begin{array}{l}\frac{1}{x}-1,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;0<x≤1\\-{x^2}+2ax-(2a-1),\;\;\;x>1\end{array}\right.$(其中$a>\frac{3}{2}$),
(Ⅰ)若當且僅當b∈(0,1)時,方程f(x)=b有三個不等的實根,求a的值;
(Ⅱ)若函數(shù)g(x)=|f(x)|在$[\frac{1}{2},3a-4]$上的最大值為M(a),求M(a)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦點與虛軸的一個端點構(gòu)成一個角為120°的三角形,則雙曲線C的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=t-1\\ y=2t+1\end{array}\right.$(t為參數(shù)),曲線C2的極坐標方程為ρ=2cosθ.
(Ⅰ)分別求出曲線C1的普通方程和曲線C2的直角坐標方程;
(Ⅱ)若點P在曲線C2上,且P到曲線C1的距離為2,求滿足這樣條件的點P的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的離心率$e=\frac{{\sqrt{5}}}{2}$,點P是拋物線y2=4x上的一動點,P到雙曲線C的上焦點F1(0,x)的距離與到直線x=-1的距離之和的最小值為$\sqrt{6}$,則該雙曲線的方程為(  )
A.$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{3}$=1B.$\frac{{y}^{2}}{4}$-x2=1C.y2-$\frac{{x}^{2}}{4}$=1D.$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{2}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知數(shù)列{an}滿足a1=$\frac{1}{2}$,an+1an=2an+1-1(n∈N*),令bn=an-1.
(Ⅰ)求數(shù)列{bn}的通項公式;
(Ⅱ)令cn=$\frac{{a}_{{2}^{n}+1}}{{a}_{{2}^{n}}}$,求證:c1+c2+…+cn<n+$\frac{7}{24}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.在等腰△ABC中,BD和CE是兩腰上的中線,且以BD⊥CE,求cosA.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.i是虛數(shù)單位,復(fù)數(shù)$\frac{3+4i}{1-2i}$=( 。
A.1+2iB.1-2iC.-1+2iD.-1-2i

查看答案和解析>>

同步練習冊答案