【題目】水果的價(jià)格會(huì)受到需求量和天氣的影響.某采購(gòu)員定期向某批發(fā)商購(gòu)進(jìn)某種水果,每箱水果的價(jià)格會(huì)在當(dāng)日市場(chǎng)價(jià)的基礎(chǔ)上進(jìn)行優(yōu)惠,購(gòu)買(mǎi)量越大優(yōu)惠幅度越大,采購(gòu)員通過(guò)對(duì)以往的10組數(shù)據(jù)進(jìn)行研究,發(fā)現(xiàn)可采用來(lái)作為價(jià)格的優(yōu)惠部分(單位:元/箱)與購(gòu)買(mǎi)量(單位:箱)之間的回歸方程,整理相關(guān)數(shù)據(jù)得到下表(表中):

(1)根據(jù)參考數(shù)據(jù),

①建立關(guān)于的回歸方程;

②若當(dāng)日該種水果的市場(chǎng)價(jià)為200元/箱,估算購(gòu)買(mǎi)100箱該種水果所需的金額(精確到0.1元).

(2)在樣本中任取一點(diǎn),若它在回歸曲線(xiàn)上或上方,則稱(chēng)該點(diǎn)為高效點(diǎn).已知這10個(gè)樣本點(diǎn)中,高效點(diǎn)有4個(gè),現(xiàn)從這10個(gè)點(diǎn)中任取3個(gè)點(diǎn),設(shè)取到高效點(diǎn)的個(gè)數(shù)為,求的數(shù)學(xué)期望.

附:對(duì)于一組數(shù)據(jù),…,,其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為,,參考數(shù)據(jù):

【答案】(1)①(元); (2).

【解析】

(1)對(duì)yaxb兩邊同時(shí)取自然對(duì)數(shù),由此求得y關(guān)于x的回歸方程;利用回歸方程計(jì)算x=100時(shí)的y值,由此求出每箱水果優(yōu)惠錢(qián)數(shù),再計(jì)算購(gòu)買(mǎi)100箱所需的金額數(shù);(2)由題意知隨機(jī)變量ξ的可能取值,計(jì)算對(duì)應(yīng)的概率值,求出數(shù)學(xué)期望值.

(1)①對(duì)兩邊同時(shí)取自然對(duì)數(shù)得

,得

故所求回歸方程為.

②由①得,將代入,得,故每箱水果大約可以獲得優(yōu)惠10e元,故購(gòu)買(mǎi)100箱該種水果所需的金額約為(元).

(2)由題意知可取0,1,2,3

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且存在不同的實(shí)數(shù)x1,x2,x3,使得fx1=fx2=fx3),則x1x2x3的取值范圍是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷(xiāo)售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

(1)求六月份這種酸奶一天的需求量不超過(guò)300瓶的概率,;

(2)設(shè)六月份一天銷(xiāo)售這種酸奶的利潤(rùn)為(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫(xiě)出的所有可能值,并估計(jì)大于零的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)點(diǎn)為拋物線(xiàn)外一點(diǎn),過(guò)點(diǎn)作拋物線(xiàn)的兩條切線(xiàn),,切點(diǎn)分別為,

(Ⅰ)若點(diǎn),求直線(xiàn)的方程;

(Ⅱ)若點(diǎn)為圓上的點(diǎn),記兩切線(xiàn),的斜率分別為,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拿破侖為人好學(xué),是法蘭西科學(xué)院院士,他對(duì)數(shù)學(xué)方面很感興趣,在行軍打仗的空閑時(shí)間,經(jīng)常研究平面幾何。他提出了著名的拿破侖定理:以三角形各邊為邊分別向外(內(nèi))側(cè)作等邊三角形,則它們的中心構(gòu)成一個(gè)等邊三角形。如圖所示,以等邊的三條邊為邊,向外作個(gè)正三角形,取它們的中心,順次連接,得到,圖中陰影部分為的公共部分。若往中投擲一點(diǎn),則該點(diǎn)落在陰影部分內(nèi)的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知極坐標(biāo)系中,點(diǎn),曲線(xiàn)的極坐標(biāo)方程為,點(diǎn)在曲線(xiàn)上運(yùn)動(dòng),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線(xiàn)的參數(shù)方程為為參數(shù)。

(1)求直線(xiàn)的極坐標(biāo)方程與曲線(xiàn)的參數(shù)方程;

(2)求線(xiàn)段的中點(diǎn)到直線(xiàn)的距離的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年“雙十一”期間,某商場(chǎng)舉辦了一次有獎(jiǎng)促銷(xiāo)活動(dòng),顧客消費(fèi)每滿(mǎn)1000元可參加一次抽獎(jiǎng)(例如:顧客甲消費(fèi)930元,不得參與抽獎(jiǎng);顧客乙消費(fèi)3400元,可以抽獎(jiǎng)三次)。如圖1,在圓盤(pán)上繪制了標(biāo)有A,B,C,D的八個(gè)扇形區(qū)域,每次抽獎(jiǎng)時(shí)由顧客按動(dòng)按鈕使指針旋轉(zhuǎn)一次,旋轉(zhuǎn)結(jié)束時(shí)指針會(huì)隨機(jī)停在圓盤(pán)上的某一個(gè)位置,顧客獲獎(jiǎng)的獎(jiǎng)次由指針?biāo)竻^(qū)域決定(指針與區(qū)域邊界線(xiàn)粗細(xì)忽略不計(jì))。商家規(guī)定:指針停在標(biāo)A,B,C,D的扇形區(qū)域分別對(duì)應(yīng)的獎(jiǎng)金為200元、150元、100元和50元。已知標(biāo)有A,B,C,D的扇形區(qū)域的圓心角成等差數(shù)列,且標(biāo)D的扇形區(qū)域的圓心角是標(biāo)A的扇形區(qū)域的圓心角的4倍.

(I)某顧客只抽獎(jiǎng)一次,設(shè)該顧客抽獎(jiǎng)所獲得的獎(jiǎng)金數(shù)為X元,求X的分布列和數(shù)學(xué)期望;

(II)如圖2,該商場(chǎng)統(tǒng)計(jì)了活動(dòng)期間一天的顧客消費(fèi)情況.現(xiàn)按照消費(fèi)金額分層抽樣選出15位顧客代表,其中獲得獎(jiǎng)金總數(shù)不足100元的顧客代表有7位.現(xiàn)從這7位顧客代表中隨機(jī)選取兩位,求這兩位顧客的獎(jiǎng)金總數(shù)和仍不足100元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一盒中裝有9張各寫(xiě)有一個(gè)數(shù)字的卡片,其中4張卡片上的數(shù)字是1,3張卡片上的數(shù)字是2,2張卡片上的數(shù)字是3,從盒中任取3張卡片.

1)求所取3張卡片上的數(shù)字完全相同的概率;

2表示所取3張卡片上的數(shù)字的中位數(shù),求的分布列與數(shù)學(xué)期望.

(注:若三個(gè)數(shù)滿(mǎn)足,則稱(chēng)為這三個(gè)數(shù)的中位數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案